Safety of Genetically Modified Foods

Biotechnology has moved at such a rapid pace that the safety of genetically modified foods has become a concern. At this time, there are no long-term, large-scale tests to prove their safety—or lack thereof. Unforeseen consequences may arise from widespread genetic modification of the food supply, including:

• Allergic reaction. If a gene producing a protein that causes an allergic reaction is engineered into corn, for example, an individual who is allergic to that protein may experience an allergic reaction to the corn. Despite the fact that food-regulating agencies require companies to report whether altered food contains any suspect proteins, unknown allergens could potentially slip through the system.

• Increased toxicity. Genetic modification may enhance natural plant toxins in unexpected ways. When a gene is switched on, besides having the desired effect, it may also stimulate the production of natural toxins.

• Resistance to antibiotics. As part of the genetic modification of organisms, marker genes are used to determine if the desired gene has been successfully embedded. Marker genes typically provide resistance to antibiotics. Even though marker genes are genetically scrambled before use to reduce the potential for this danger, their use could contribute to the growing problem of antibiotic resistance.

• Herbicide-resistant weeds. Once modified crops are planted, genes may travel via airborne, waterborne, or animal-borne seeds and pollen to weedy relatives, creating "superweeds" that are able to resist herbicides.

• Harm to other organisms. Nontargeted species may inadvertently be harmed by a genetically modified plant producing endotoxins intended for a specific pest. For example, nearly all insect-resistant plants contain a gene from the bacterium Baciullus thuringiensis (Bt), which results in the production of a natural endotoxin that is toxic to all insects. The Bt endotoxin is widely used by organic and conventional farmers because it is a relatively harmless, natural pesticide. However, genetically modified plants such as Bt corn, cotton, potatoes, rice, and tomatoes constantly produce the Bt endotoxin, and thus speed up the spread of Bt resistance among pests that feed on these

A protest of genetically modified foods in front of the regional headquarters of the United Nations in Thailand. Critics of genetically modified foods cite concern over the possibility that modified foods might have unexpected and dangerous properties. [© AFP/Corbis. Reproduced by permission.]

plants. They may also reduce insect diversity and population numbers among harmless and beneficial insects.

• Pesticide-resistant insects and the demise of safe pesticides. Most of the common genetically modified crops contain a gene that produces a protein which is toxic to a specific pest. However, exposing pests to toxins may stimulate resistance by the pests and render the pesticides useless.

Typically, when a new crop is created, whether by traditional methods or genetic modification, breeders conduct field testing for several seasons to make sure only desirable changes occur. Appearance, growth characteristics, and taste of the food are checked, and analytical tests to determine changes nutrient: dietary substance necessary in nutrients and safety are performed. According to the U.S. Department for health

Was this article helpful?

0 0
The Most Important Guide On Dieting And Nutrition For 21st Century

The Most Important Guide On Dieting And Nutrition For 21st Century

A Hard Hitting, Powerhouse E-book That Is Guaranteed To Change The Way You Look At Your Health And Wellness... Forever. Everything You Know About Health And Wellness Is Going To Change, Discover How You Can Enjoy Great Health Without Going Through Extreme Workouts Or Horrendous Diets.

Get My Free Ebook

Post a comment