Starch digestion and absorption

FAT LOSS Activation

Best Weight Loss Programs That Work

Get Instant Access

Fate of digestible starch

Most of the starch present in the diet is cooked and gelatinized. As such, most dietary starch is easily digested, accounting for approximately 95% of that consumed (Cassidy et al., 1994). Various diet, food processing and physiological factors are known to affect starch digestion, and these are listed in Table 8.3. Starch is digested/hydrolyzed enzymically and sequentially within the upper gastrointestinal tract (Gray, 1992, 2003; Levin, 1994). In the mouth some starch is digested to maltose via salivary amylase. In the small intestine, starch is initially digested in the lumen via pancreatic amylase to smaller compounds that include maltose, maltotriose and branched limit dextrins. Two more enzymes produced by the brush border (sucrase-isomaltase and glucoamylase) further hydrolyze the starch products to glucose which is actively absorbed through the enterocyte membrane. Most dietary starch is absorbed as glucose to participate in energy metabolism in the body.

Table 8.3 Food and physiological factors affecting the rate and extent of starch digestion

Category Detail

Food behavior Type of starchy food eaten

Amount of starchy food eaten Customs of food preparation and consumption Nature of the starch eaten Amylose content

Granularity Conformation

Food processing Loss of cellular and native plant structure

Processing conditions Extent of gelatinization Particle size

Other food components - antinutrients, viscous fiber, fat

Physiology Health status

Individual physiological differences Extent of chewing Gastric emptying Viscosity

Gastrointestinal transit time Enzyme inhibition

Fate of resistant starch

RS is not digested, hydrolyzed or absorbed and so it does not contribute to plasma glucose levels. Instead RS passes into the large bowel where it contributes metabolic energy through bacterially fermented and absorbed SCFAs.

The large bowel is intensely populated with bacteria, with several hundred species present at about 1011-1012 CFU/g dry weight (Cummings and Macfarlane, 1991). These bacteria have a key role in salvaging undigested energy from food residues via metabolic pathways that generate SCFAs -such as acetate, propionate and butyrate. Some of the salvaged energy is utilized by the bacteria for growth but approximately 95% of the SCFAs are absorbed (Cummings and Macfarlane, 1991) and provide energy to the body. For example butyrate is the primary energy source for colonocytes and acetate is mainly used by muscle tissue (Salminen et al., 1998). SCFAs provide approximately 5-10% of our daily energy intake (Cummings, 1996).

Some of the RS is not fermented. The amount will depend on the type of RS, how much RS has been consumed, the composition of the colonic microflora, the digestive transit time and the health status of the individual. As much as 22% of RS can be excreted unfermented from the body (Phillips et al., 1995).

Was this article helpful?

0 0
Psychology Of Weight Loss And Management

Psychology Of Weight Loss And Management

Get All The Support And Guidance You Need To Be A Success At The Psychology Of Weight Loss And Management. This Book Is One Of The Most Valuable Resources In The World When It Comes To Exploring How Your Brain Plays A Role In Weight Loss And Management.

Get My Free Ebook

Post a comment