[1] Mantovani A. Cancer: Inflaming metastasis. Nature, 2009. 457(7225): 36-37.

[2] Vandercappellen J., Van Damme J., and Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett, 2008. 267(2): 226-244.

[3] Thobe M.N., Clark R.J., Bainer R.O., Prasad S.M., and Rinker-Schaeffer C.W. From Prostate to Bone: Key Players in Prostate Cancer Bone Metastasis. Cancers (Basel), 2011. 3(1): 478-493.

[4] Petit I., Jin D., and Rafii S. The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol, 2007. 28(7): 299-307.

[5] Gueron G., De Siervi A., and Vazquez E. Advanced prostate cancer: reinforcing the strings between inflammation and the metastatic behavior. Prostate Cancer Prostatic Dis, 2011.

[6] Gueron G., De Siervi A., and Vazquez E. Key questions in metastasis: new insights in molecular pathways and therapeutic implications. Curr Pharm Biotechnol, 2011. 12(11): 1867-1880.

[7] Hardy C.L. The homing of hematopoietic stem cells to the bone marrow. Am J Med Sci, 1995. 309(5): 260-266.

[8] Aiuti A., Tavian M., Cipponi A., Ficara F., Zappone E., Hoxie J., Peault B., and Bor-dignon C. Expression of CXCR4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. Eur J Immunol, 1999. 29(6): 1823-1831.

[9] Mochizuki H., Matsubara A., Teishima J., Mutaguchi K., Yasumoto H., Dahiya R., Usui T., and Kamiya K. Interaction of ligand-receptor system between stromal-cell-derived factor-1 and CXC chemokine receptor 4 in human prostate cancer: a possible predictor of metastasis. Biochem Biophys Res Commun, 2004. 320(3): 656-663.

[10] Darash-Yahana M., Gillespie J.W., Hewitt S.M., Chen Y.Y., Maeda S., Stein I., Singh S.P., Bedolla R.B., Peled A., Troyer D.A., Pikarsky E., Karin M., and Farber J.M. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. PLoS One, 2009. 4(8): e6695.

[11] Xing Y., Liu M., Du Y., Qu F., Li Y., Zhang Q., Xiao Y., Zhao J., Zeng F., and Xiao C. Tumor cell-specific blockade of CXCR4/SDF-1 interactions in prostate cancer cells by hTERT promoter induced CXCR4 knockdown: A possible metastasis preventing and minimizing approach. Cancer Biol Ther, 2008. 7(11): 1839-1848.

[12] Frigo D.E., Sherk A.B., Wittmann B.M., Norris J.D., Wang Q., Joseph J.D., Toner A.P., Brown M., and McDonnell D.P. Induction of Kruppel-like factor 5 expression by an-drogens results in increased CXCR4-dependent migration of prostate cancer cells in vitro. Mol Endocrinol, 2009. 23(9): 1385-1396.

[13] Cai J., Kandagatla P., Singareddy R., Kropinski A., Sheng S., Cher M.L., and Chinni S.R. Androgens Induce Functional CXCR4 through ERG Factor Expression in TMPRSS2-ERG Fusion-Positive Prostate Cancer Cells. Transl Oncol, 2010. 3(3): 195-203.

[14] Akashi T., Koizumi K., Tsuneyama K., Saiki I., Takano Y., and Fuse H. Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci, 2008. 99(3): 539-542.

[15] Singh R.K. and Lokeshwar B.L. The IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signaling to promote prostate cancer growth. Cancer Res, 2011. 71(9): 3268-3277.

[16] Raggo C., Ruhl R., McAllister S., Koon H., Dezube B.J., Fruh K., and Moses A.V. Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus. Cancer Res, 2005. 65(12): 5084-5095.

[17] Miao Z., Luker K.E., Summers B.C., Berahovich R., Bhojani M.S., Rehemtulla A., Kleer C.G., Essner J.J., Nasevicius A., Luker G.D., Howard M.C., and Schall T.J. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci U S A, 2007. 104(40): 15735-15740.

[18] Wang J., Lu Y., Koch A.E., Zhang J., and Taichman R.S. CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway. Cancer Res, 2008. 68(24): 10367-10376.

[19] Ha H.K., Lee W., Park H.J., Lee S.D., Lee J.Z., and Chung M.K. Clinical significance of CXCL16/CXCR6 expression in patients with prostate cancer. Mol Med Report, 2011. 4(3): 419-424.

[20] Unutmaz D., Xiang W., Sunshine M.J., Campbell J., Butcher E., and Littman D.R. The primate lentiviral receptor Bonzo/STRL33 is coordinately regulated with CCR5 and its expression pattern is conserved between human and mouse. J Immunol, 2000. 165(6): 3284-3292.

[21] Chandrasekar B., Bysani S., and Mummidi S. CXCL16 signals via Gi, phosphatidyli-nositol 3-kinase, Akt, I kappa B kinase, and nuclear factor-kappa B and induces cell-cell adhesion and aortic smooth muscle cell proliferation. J Biol Chem, 2004. 279(5): 3188-3196.

[22] Deng L., Chen N., Li Y., Zheng H., and Lei Q. CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta, 2010. 1806(1): 42-49.

[23] Nakayama T., Hieshima K., Izawa D., Tatsumi Y., Kanamaru A., and Yoshie O. Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol, 2003. 170(3): 1136-1140.

[24] Shimaoka T., Nakayama T., Fukumoto N., Kume N., Takahashi S., Yamaguchi J., Minami M., Hayashida K., Kita T., Ohsumi J., Yoshie O., and Yonehara S. Cell surface-anchored SR-PSOX/CXC chemokine ligand 16 mediates firm adhesion of CXC chemokine receptor 6-expressing cells. J Leukoc Biol, 2004. 75(2): 267-274.

[25] Seaton A., Scullin P., Maxwell P.J., Wilson C., Pettigrew J., Gallagher R., O'Sullivan J.M., Johnston P.G., and Waugh D.J. Interleukin-8 signaling promotes androgen-in-

dependent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis, 2008. 29(6): 1148-1156.

[26] Inoue K., Slaton J.W., Eve B.Y., Kim S.J., Perrotte P., Balbay M.D., Yano S., Bar-Eli M., Radinsky R., Pettaway C.A., and Dinney C.P. Interleukin 8 expression regulates tu-morigenicity and metastases in androgen-independent prostate cancer. Clin Cancer Res, 2000. 6(5): 2104-2119.

[27] Kim S.J., Uehara H., Karashima T., McCarty M., Shih N., and Fidler I.J. Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia, 2001. 3(1): 33-42.

[28] Lamont K.R. and Tindall D.J. Minireview: alternative activation pathways for the androgen receptor in prostate cancer. Mol Endocrinol, 2011. 25(6): 897-907.

[29] Mijatovic T., Mahieu T., Bruyere C., De Neve N., Dewelle J., Simon G., Dehoux M.J., van der Aar E., Haibe-Kains B., Bontempi G., Decaestecker C., Van Quaquebeke E., Darro F., and Kiss R. UNBS5162, a novel naphthalimide that decreases CXCL chemo-kine expression in experimental prostate cancers. Neoplasia, 2008. 10(6): 573-586.

[30] George D.J., Halabi S., Shepard T.F., Sanford B., Vogelzang N.J., Small E.J., and Kantoff P.W. The prognostic significance of plasma interleukin-6 levels in patients with metastatic hormone-refractory prostate cancer: results from cancer and leukemia group B 9480. Clin Cancer Res, 2005. 11(5): 1815-1820.

[31] Alcover J., Filella X., Luque P., Molina R., Izquierdo L., Auge J.M., and Alcaraz A. Prognostic value of IL-6 in localized prostatic cancer. Anticancer Res, 2010. 30(10): 4369-4372.

[32] Fizazi K., De Bono J.S., Flechon A., Heidenreich A., Voog E., Davis N.B., Qi M., Bandekar R., Vermeulen J.T., Cornfeld M., and Hudes G.R. Randomised phase II study of siltuximab (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone alone in metastatic castration-resistant prostate cancer. Eur J Cancer, 2012. 48(1): 85-93.

[33] Sottnik J.L., Zhang J., Macoska J.A., and Keller E.T. The PCa Tumor Microenvironment. Cancer Microenviron, 2011. 4(3): 283-297.

[34] Rojas A., Liu G., Coleman I., Nelson P.S., Zhang M., Dash R., Fisher P.B., Plymate S.R., and Wu J.D. IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene, 2011. 30(20): 2345-2355.

[35] Blaszczyk N., Masri B.A., Mawji N.R., Ueda T., McAlinden G., Duncan C.P., Bru-chovsky N., Schweikert H.U., Schnabel D., Jones E.C., and Sadar M.D. Osteoblast-de-rived factors induce androgen-independent proliferation and expression of prostate-specific antigen in human prostate cancer cells. Clin Cancer Res, 2004. 10(5): 1860-1869.

[36] Culig Z., Steiner H., Bartsch G., and Hobisch A. Interleukin-6 regulation of prostate cancer cell growth. J Cell Biochem, 2005. 95(3): 497-505.

[37] Carswell E.A., Old L.J., Kassel R.L., Green S., Fiore N., and Williamson B. An endo-toxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A, 1975. 72(9): 3666-3670.

[38] Pennica D., Nedwin G.E., Hayflick J.S., Seeburg P.H., Derynck R., Palladino M.A., Kohr W.J., Aggarwal B.B., and Goeddel D.V. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature, 1984. 312(5996): 724-729.

[39] Vandenabeele P., Declercq W., Van Herreweghe F., and Vanden Berghe T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal, 2010. 3(115): re4.

[40] Chen G. and Goeddel D.V. TNF-R1 signaling: a beautiful pathway. Science, 2002. 296(5573): 1634-1635.

[41] Hsu H., Xiong J., and Goeddel D.V. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell, 1995. 81(4): 495-504.

[42] Malik S.T. Tumour necrosis factor: roles in cancer pathophysiology. Semin Cancer Biol, 1992. 3(1): 27-33.

[43] Wu Y. and Zhou B.P. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer, 2010. 102(4): 639-644.

[44] Davis J.S., Nastiuk K.L., and Krolewski J.J. TNF is necessary for castration-induced prostate regression, whereas TRAIL and FasL are dispensable. Mol Endocrinol. 25(4): 611-620.

[45] Josson S., Matsuoka Y., Chung L.W., Zhau H.E., and Wang R. Tumor-stroma co-evolution in prostate cancer progression and metastasis. Semin Cell Dev Biol, 2010. 21(1): 26-32.

[46] De Marzo A.M., Platz E.A., Sutcliffe S., Xu J., Gronberg H., Drake C.G., Nakai Y., Isaacs W.B., and Nelson W.G. Inflammation in prostate carcinogenesis. Nat Rev Cancer, 2007. 7(4): 256-269.

[47] Debes J.D. and Tindall D.J. Mechanisms of androgen-refractory prostate cancer. N Engl J Med, 2004. 351(15): 1488-1490.

[48] Sun S., Sprenger C.C., Vessella R.L., Haugk K., Soriano K., Mostaghel E.A., Page S.T., Coleman I.M., Nguyen H.M., Sun H., Nelson P.S., and Plymate S.R. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest, 2010. 120(8): 2715-2730.

[49] Shiota M., Yokomizo A., and Naito S. Oxidative stress and androgen receptor signaling in the development and progression of castration-resistant prostate cancer. Free Radic Biol Med, 2011. 51(7): 1320-1328.

[50] Shiota M., Yokomizo A., Tada Y., Inokuchi J., Kashiwagi E., Masubuchi D., Eto M., Uchiumi T., and Naito S. Castration resistance of prostate cancer cells caused by castration-induced oxidative stress through Twistl and androgen receptor overexpression. Oncogene, 2010. 29(2): 237-250.

[51] Yang J., Mani S.A., Donaher J.L., Ramaswamy S., Itzykson R.A., Come C., Savagner P., Gitelman I., Richardson A., and Weinberg R.A. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004. 117(7): 927-939.

[52] Bostwick D.G., Alexander E.E., Singh R., Shan A., Qian J., Santella R.M., Oberley L.W., Yan T., Zhong W., Jiang X., and Oberley T.D. Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer, 2000. 89(1): 123-134.

[53] Sharifi N., Hurt E.M., Thomas S.B., and Farrar W.L. Effects of manganese superoxide dismutase silencing on androgen receptor function and gene regulation: implications for castration-resistant prostate cancer. Clin Cancer Res, 2008. 14(19): 6073-6080.

[54] Pang S.T., Dillner K., Wu X., Pousette A., Norstedt G., and Flores-Morales A. Gene expression profiling of androgen deficiency predicts a pathway of prostate apoptosis that involves genes related to oxidative stress. Endocrinology, 2002. 143(12): 4897-4906.

[55] Shiota M., Yokomizo A., Kashiwagi E., Takeuchi A., Fujimoto N., Uchiumi T., and Naito S. Peroxiredoxin 2 in the nucleus and cytoplasm distinctly regulates androgen receptor activity in prostate cancer cells. Free Radic Biol Med, 2011. 51(1): 78-87.

[56] Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev, 1989. 8(2): 98-101.

[57] Tuxhorn J.A., Ayala G.E., and Rowley D.R. Reactive stroma in prostate cancer progression. J Urol, 2001. 166(6): 2472-2483.

[58] Zhang X., Wang W., True L.D., Vessella R.L., and Takayama T.K. Protease-activated receptor-1 is upregulated in reactive stroma of primary prostate cancer and bone metastasis. Prostate, 2009. 69(7): 727-736.

[59] Hanahan D. and Weinberg R.A. Hallmarks of cancer: the next generation. Cell, 2011. 144(5): 646-674.

[60] Harfouche R., Malak N.A., Brandes R.P., Karsan A., Irani K., and Hussain S.N. Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB J, 2005. 19(12): 1728-1730.

[61] Lander H.M., Milbank A.J., Tauras J.M., Hajjar D.P., Hempstead B.L., Schwartz G.D., Kraemer R.T., Mirza U.A., Chait B.T., Burk S.C., and Quilliam L.A. Redox regulation of cell signalling. Nature, 1996. 381(6581): 380-381.

[62] Chiarugi P. and Fiaschi T. Redox signalling in anchorage-dependent cell growth. Cell Signal, 2007. 19(4): 672-682.

[63] Visconti R. and Grieco D. New insights on oxidative stress in cancer. Curr Opin Drug Discov Devel, 2009. 12(2): 240-245.

[64] Toullec A., Gerald D., Despouy G., Bourachot B., Cardon M., Lefort S., Richardson M., Rigaill G., Parrini M.C., Lucchesi C., Bellanger D., Stern M.H., Dubois T., Sastre-Garau X., Delattre O., Vincent-Salomon A., and Mechta-Grigoriou F. Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol Med, 2010. 2(6): 211-230.

[65] Shimojo Y., Akimoto M., Hisanaga T., Tanaka T., Tajima Y., Honma Y., and Takenaga K. Attenuation of reactive oxygen species by antioxidants suppresses hypoxia-in-duced epithelial-mesenchymal transition and metastasis of pancreatic cancer cells. Clin Exp Metastasis, 2012.

[66] Eliceiri B.P. Integrin and growth factor receptor crosstalk. Circ Res, 2001. 89(12): 1104-1110.

[67] Shukla S., MacLennan G.T., Fu P., Patel J., Marengo S.R., Resnick M.I., and Gupta S. Nuclear factor-kappaB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression. Neoplasia, 2004. 6(4): 390-400.

[68] Kong D., Li Y., Wang Z., Banerjee S., and Sarkar F.H. Inhibition of angiogenesis and invasion by 3,3'-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res, 2007. 67(7): 3310-3319.

[69] Ryter S.W. and Choi A.M. Heme oxygenase-1: molecular mechanisms of gene expression in oxygen-related stress. Antioxid Redox Signal, 2002. 4(4): 625-632.

[70] Min K.J., Lee J.T., Joe E.H., and Kwon T.K. An IkappaBalpha phosphorylation inhibitor induces heme oxygenase-1(HO-1) expression through the activation of reactive oxygen species (ROS)-Nrf2-ARE signaling and ROS-PI3K/Akt signaling in an NF-kappaB-independent mechanism. Cell Signal, 2011. 23(9): 1505-1513.

[71] Sacca P., Meiss R., Casas G., Mazza O., Calvo J.C., Navone N., and Vazquez E. Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer. Br J Cancer, 2007. 97(12): 1683-1689.

[72] Lin Q., Weis S., Yang G., Weng Y.H., Helston R., Rish K., Smith A., Bordner J., Polte T., Gaunitz F., and Dennery P.A. Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem, 2007. 282(28): 20621-20633.

[73] Lin Q.S., Weis S., Yang G., Zhuang T., Abate A., and Dennery P.A. Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress. Free Rad-ic Biol Med, 2008. 44(5): 847-855.

[74] Gueron G., De Siervi A., Ferrando M., Salierno M., De Luca P., Elguero B., Meiss R., Navone N., and Vazquez E.S. Critical role of endogenous heme oxygenase 1 as a tu-

ner of the invasive potential of prostate cancer cells. Mol Cancer Res, 2009. 7(11): 1745-1755.

[75] Ferrando M., Gueron G., Elguero B., Giudice J., Salles A., Leskow F.C., Jares-Erijman E.A., Colombo L., Meiss R., Navone N., De Siervi A., and Vazquez E. Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer. Angiogenesis, 2011. 14(4): 467-479.

[76] Li Y., Su J., DingZhang X., Zhang J., Yoshimoto M., Liu S., Bijian K., Gupta A., Squire J.A., Alaoui Jamali M.A., and Bismar T.A. PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome. J Pathol, 2011. 224(1): 90-100.

[77] Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res, 2004. 32(Database issue): D109-111.

[78] Friedman R.C., Farh K.K., Burge C.B., and Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 2009. 19(1): 92-105.

[79] Osman A. MicroRNAs in health and disease—basic science and clinical applications. Clin Lab, 2012. 58(5-6): 393-402.

[80] Chen C.Z. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med, 2005. 353(17): 1768-1771.

[81] Calin G.A., Sevignani C., Dumitru C.D., Hyslop T., Noch E., Yendamuri S., Shimizu M., Rattan S., Bullrich F., Negrini M., and Croce C.M. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 2004. 101(9): 2999-3004.

[82] Cortez M.A., Bueso-Ramos C., Ferdin J., Lopez-Berestein G., Sood A.K., and Calin G.A. MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat Rev Clin Oncol, 2011. 8(8): 467-477.

[83] Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., Downing J.R., Jacks T., Horvitz H.R., and Golub T.R. MicroRNA expression profiles classify human cancers. Nature, 2005. 435(7043): 834-838.

[84] Koturbash I., Zemp F.J., Pogribny I., and Kovalchuk O. Small molecules with big effects: the role of the microRNAome in cancer and carcinogenesis. Mutat Res, 2011. 722(2): 94-105.

[85] Coppola V., De Maria R., and Bonci D. MicroRNAs and prostate cancer. Endocr Relat Cancer, 2010. 17(1): F1-17.

[86] Ribas J., Ni X., Haffner M., Wentzel E.A., Salmasi A.H., Chowdhury W.H., Kudrolli T.A., Yegnasubramanian S., Luo J., Rodriguez R., Mendell J.T., and Lupold S.E. miR-21: an androgen receptor-regulated microRNA that promotes hormone-depend ent and hormone-independent prostate cancer growth. Cancer Res, 2009. 69(18): 7165-7169.

[87] Mercatelli N., Coppola V., Bonci D., Miele F., Costantini A., Guadagnoli M., Bonanno E., Muto G., Frajese G.V., De Maria R., Spagnoli L.G., Farace M.G., and Ciafre S.A. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One, 2008. 3(12): e4029.

[88] Scott G.K., Goga A., Bhaumik D., Berger C.E., Sullivan C.S., and Benz C.C. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem, 2007. 282(2): 1479-1486.

[89] Craft N., Shostak Y., Carey M., and Sawyers C.L. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med, 1999. 5(3): 280-285.

[90] Zhao Y., Hao Y., Ji H., Fang Y., Guo Y., Sha W., Zhou Y., Pang X., Southerland W.M., Califano J.A., and Gu X. Combination effects of salvianolic acid B with low-dose cele-coxib on inhibition of head and neck squamous cell carcinoma growth in vitro and in vivo. Cancer Prev Res (Phila), 2010. 3(6): 787-796.

[91] Hao Y., Gu X., Zhao Y., Greene S., Sha W., Smoot D.T., Califano J., Wu T.C., and Pang X. Enforced expression of miR-101 inhibits prostate cancer cell growth by modulating the COX-2 pathway in vivo. Cancer Prev Res (Phila), 2011. 4(7): 1073-1083.

[92] Khan A.P., Poisson L.M., Bhat V.B., Fermin D., Zhao R., Kalyana-Sundaram S., Mi-chailidis G., Nesvizhskii A.I., Omenn G.S., Chinnaiyan A.M., and Sreekumar A. Quantitative proteomic profiling of prostate cancer reveals a role for miR-128 in prostate cancer. Mol Cell Proteomics, 2010. 9(2): 298-312.

[93] Lin S.L., Chiang A., Chang D., and Ying S.Y. Loss of mir-146a function in hormone-refractory prostate cancer. RNA, 2008. 14(3): 417-424.

[94] Pang Y., Young C.Y., and Yuan H. MicroRNAs and prostate cancer. Acta Biochim Bi-ophys Sin (Shanghai), 2010. 42(6): 363-369.

[95] Hudson R.S., Yi M., Esposito D., Watkins S.K., Hurwitz A.A., Yfantis H.G., Lee D.H., Borin J.F., Naslund M.J., Alexander R.B., Dorsey T.H., Stephens R.M., Croce C.M., and Ambs S. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res, 2012. 40(8): 3689-3703.

[96] Selth L.A., Tilley W.D., and Butler L.M. Circulating microRNAs: macro-utility as markers of prostate cancer? Endocr Relat Cancer, 2012. 19(4): R99-R113.

[97] Brase J.C., Johannes M., Schlomm T., Falth M., Haese A., Steuber T., Beissbarth T., Kuner R., and Sultmann H. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer, 2011. 128(3): 608-616.

[98] Zhang H.L., Yang L.F., Zhu Y., Yao X.D., Zhang S.L., Dai B., Zhu Y.P., Shen Y.J., Shi G.H., and Ye D.W. Serum miRNA-21: elevated levels in patients with metastatic hor mone-refractory prostate cancer and potential predictive factor for the efficacy of do-cetaxel-based chemotherapy. Prostate, 2011. 71(3): 326-331.

[99] Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005. 69 Suppl 3: 4-10.

[100] Ferrara N. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev, 2010. 21(1): 21-26.

[101] Kazerounian S., Yee K.O., and Lawler J. Thrombospondins in cancer. Cell Mol Life Sci, 2008. 65(5): 700-712.

[102] Ribatti D. Endogenous inhibitors of angiogenesis: a historical review. Leuk Res, 2009. 33(5): 638-644.

[103] Azam F., Mehta S., and Harris A.L. Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer, 2010. 46(8): 1323-1332.

[104] Osawa M., Masuda M., Kusano K., and Fujiwara K. Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J Cell Biol, 2002. 158(4): 773-785.

[105] Dome B., Hendrix M.J., Paku S., Tovari J., and Timar J. Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications. Am J Pathol, 2007. 170(1): 1-15.

[106] Holash J., Maisonpierre P.C., Compton D., Boland P., Alexander C.R., Zagzag D., Yancopoulos G.D., and Wiegand S.J. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science, 1999. 284(5422): 1994-1998.

[107] Vajkoczy P., Farhadi M., Gaumann A., Heidenreich R., Erber R., Wunder A., Tonn J.C., Menger M.D., and Breier G. Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Invest, 2002. 109(6): 777-785.

[108] Zhao C., Yang H., Shi H., Wang X., Chen X., Yuan Y., Lin S., and Wei Y. Distinct contributions of angiogenesis and vascular co-option during the initiation of primary microtumors and micrometastases. Carcinogenesis, 2011. 32(8): 1143-1150.

[109] Vermeulen P.B., Colpaert C., Salgado R., Royers R., Hellemans H., Van Den Heuvel E., Goovaerts G., Dirix L.Y., and Van Marck E. Liver metastases from colorectal ade-nocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol, 2001. 195(3): 336-342.

[110] Borgstrom P., Bourdon M.A., Hillan K.J., Sriramarao P., and Ferrara N. Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. Prostate, 1998. 35(1): 1-10.

[111] Sweeney P., Karashima T., Kim S.J., Kedar D., Mian B., Huang S., Baker C., Fan Z., Hicklin D.J., Pettaway C.A., and Dinney C.P. Anti-vascular endothelial growth factor receptor 2 antibody reduces tumorigenicity and metastasis in orthotopic prostate cancer xenografts via induction of endothelial cell apoptosis and reduction of endo-thelial cell matrix metalloproteinase type 9 production. Clin Cancer Res, 2002. 8(8): 2714-2724.

[112] Weinberg R.A., ed. The Biology of Cancer. ed. Weinberg R.A. 2007, Garland Science: New York.

[113] Maniotis A.J., Folberg R., Hess A., Seftor E.A., Gardner L.M., Pe'er J., Trent J.M., Meltzer P.S., and Hendrix M.J. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol, 1999. 155(3): 739-752.

[114] Liu R., Yang K., Meng C., Zhang Z., and Xu Y. Vasculogenic mimicry is a marker of poor prognosis in prostate cancer. Cancer Biol Ther, 2012. 13(7): 527-533.

[115] Raza A., Franklin M.J., and Dudek A.Z. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol, 2010. 85(8): 593-598.

[116] Sharma N., Seftor R.E., Seftor E.A., Gruman L.M., Heidger P.M., Jr., Cohen M.B., Lu-baroff D.M., and Hendrix M.J. Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: role in vasculogenic mimicry. Prostate, 2002. 50(3): 189-201.

[117] Ahmadi S.A., Moinfar M., Gohari Moghaddam K., and Bahadori M. Practical application of angiogenesis and vasculogenic mimicry in prostatic adenocarcinoma. Arch Iran Med, 2010. 13(6): 498-503.

[118] Baluk P., Hashizume H., and McDonald D.M. Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev, 2005. 15(1): 102-111.

[119] Dasgupta S., Srinidhi S., and Vishwanatha J.K. Oncogenic activation in prostate cancer progression and metastasis: Molecular insights and future challenges. J Carcinog, 2012. 11: 4.

[120] Bonfil R.D., Chinni S., Fridman R., Kim H.R., and Cher M.L. Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis. Urol Oncol, 2007. 25(5): 407-411.

[121] Hendrix M.J., Seftor E.A., Hess A.R., and Seftor R.E. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer, 2003. 3(6): 411-421.

[122] Kerbel R.S. Tumor angiogenesis: past, present and the near future. Carcinogenesis, 2000. 21(3): 505-515.

[123] Yang Q., McHugh K.P., Patntirapong S., Gu X., Wunderlich L., and Hauschka P.V. VEGF enhancement of osteoclast survival and bone resorption involves VEGF recep-tor-2 signaling and beta3-integrin. Matrix Biol, 2008. 27(7): 589-599.

[124] Dai J., Kitagawa Y., Zhang J., Yao Z., Mizokami A., Cheng S., Nor J., McCauley L.K., Taichman R.S., and Keller E.T. Vascular endothelial growth factor contributes to the prostate cancer-induced osteoblast differentiation mediated by bone morphogenetic protein. Cancer Res, 2004. 64(3): 994-999.

[125] Akech J., Wixted J.J., Bedard K., van der Deen M., Hussain S., Guise T.A., van Wijnen A.J., Stein J.L., Languino L.R., Altieri D.C., Pratap J., Keller E., Stein G.S., and Lian J.B. Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene, 2010. 29(6): 811-821.

[126] Wang Z., Li Y., Banerjee S., Kong D., Ahmad A., Nogueira V., Hay N., and Sarkar F.H. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem, 2010. 109(4): 726-736.

[127] Bin Hafeez B., Adhami V.M., Asim M., Siddiqui I.A., Bhat K.M., Zhong W., Saleem M., Din M., Setaluri V., and Mukhtar H. Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metallo-proteinase-9 and urokinase plasminogen activator. Clin Cancer Res, 2009. 15(2): 452-459.

[128] Dufraine J., Funahashi Y., and Kitajewski J. Notch signaling regulates tumor angio-genesis by diverse mechanisms. Oncogene, 2008. 27(38): 5132-5137.

[129] Paulis Y.W., Soetekouw P.M., Verheul H.M., Tjan-Heijnen V.C., and Griffioen A.W. Signalling pathways in vasculogenic mimicry. Biochim Biophys Acta, 2010. 1806(1): 18-28.

Section 7

Role of Androgen Receptor

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment