It is clear that multiple host and environmental factors contribute to prostate cancer and that inflammation sets the scene for the appearance of a reactive stroma, providing growth factors, chemokines and proteins that stimulate among other things, invasion. In return, this cancer finds a fertile soil to proliferate and disseminate in the bone, which acts as a specialized niche for prostate cancer cells. Moreover, the vascular compartment contributes significantly to prostate cancer growth through provision of oxygen and nutrients. Prostate cancer cells break into the scene co-opting blood vessels, by intussusception or even enhancing an-giogenesis, attracting endothelial cells, promoting their growth in the tumor microenvironment and even transdifferentiating through the EMT. The intricacy relies on deciphering the diabolic liaison of all these factors and physiological processes. How can successful therapeutic strategies be designed if there are still so many hidden molecular variables waiting to be unveiled? The path in building promising clinical action plans will depend on unraveling the rheostat molecules that control the metabolic reprogramming of tumoral cells and the tumor microenvironment. Who are the key players controlling all the biochemical reactions producing ROS and RNS within cancer cells? Even more who are their exact targets? Several microRNA signatures are identified and described in the inflammatory milieu associated to prostate cancer, hence are miRNA-base therapeutic strategies a promising option for the disease? The possibility to target cancer cell malignancy by intervention on both its metabolic reprogramming and its interplay with environmental factors is in truth captivating. The key molecules and pathophysiological process outlined throughout this chapter drive home the concept that the tumor microenvironment enhanced by an inflammatory wand offers interesting homoestatic targets for prostate cancer therapy. In this synopsis, blocking the sustained inflammatory network will offer new promising avenues to achieve significant therapeutic gains in the treatment of prostate cancer.

0 0

Post a comment