Conclusions

We have covered the primary ways by which metabolite biosynthesis is regulated by environmental, biotic, biochemical, and molecular signals. These mechanisms mostly impinge on regulation of rates of enzyme activity or on regulation of gene expression for particular enzymes. Also of importance in such regulation is the concept of DNA, RNA, and protein (enzyme) turnover, where one must consider rates of synthesis vs. rates of degradation. Metabolite homeostasis refers to all the inputs and outputs that affect the level of a given metabolite in plant cells. The inputs refer to the rates of synthesis of a given metabolite. The outputs refer to the rates of degradation of the metabolite to other metabolites or oxidation products as well as to the rates of formation of conjugates of the metabolite (e.g., glucosyl, amide-linked conjugates, of myo-inositol ester conjugates, as seen with the plant hormone, indole-3-acetic acid). All of these inputs and outputs affect the level of a given metabolite. Once research provides an understanding of the above factors as well as an understanding of the enzymes controlling the biosynthetic pathways leading to the production of specific metabolites, steps can be taken to either increase or decrease the levels of these metabolites produced by the plants. These steps may include controlled environmental conditions, simulated herbivory, metabolite feeds, plant growth regulators, fungal elicitors, or transgenic technology. However, finding the best way to adjust the production of a given metabolite is by no means an easy task. Each individual biosynthetic pathway is regulated by a vast array of environmental, biotic, biochemical, and molecular factors. It is these factors that allow for the incredible variety of metabolite activities that control the overall growth, development, and environmental interactions of each plant.

FIGURE 3.9 Pathways of isoprenoid biosynthesis. The enzymatic steps are numbered according to the key in Table 3.2. (From Scolnick, P. A. and Bartley, G. E., Plant Mol. Bio. Rep., 14, 305, 1996. With permission.)

TABLE 3.5

Key to Enzymatic Steps Shown in Figure 3.9

Step

Enzyme

l

3- Hydroxy-3-methyl glutaryl coenzyme A reductase

2

Mevalonic acid kinase

3

Mevalonate 5-pyrophosphate decarboxylase

4

Farnesyl pyrophosphate synthase

5

Geranylgeranyl pyrophosphate synthase

6

Hexaprenyl pyrophosphate synthase-related protein

7

Isopentenyl pyrophosphate isomerase

8

Chrysanthemyl pyrophosphate synthase

9

s- Linalool synthase

l0

4s- Limonene synthase

ll

5-epi- Aristolochene synthase

l2

Vetispiradiene synthase

l3

(+)-8- Cadinene synthase

l4

Squalene synthase

l5

Squalene epoxidase

l6

Oxidosqualene cyclase (cycloartenol synthase)

l7

Geranylgeranyl pyrophosphate hydrogenase

l8

Abietadiene synthase

l9

Casbene synthase

20

ent- Copalyl pyrophosphate synthase A

2l

ent- Kaurene synthase

22

Taxadiene synthase

23

Phytoene synthase

24

Phytoene desaturase

25

Z- Carotene desaturase

26

Lycopene cyclase (P)

27

Lycopene cyclase (e)

28

P- Carotene hydroxylase

29

Zeaxanthin expoxidase

30

Violaxanthin de-epoxidase

From Scolnik, P. A. and Bartley, G. E., Plant Mol. Bio. Rep., 14, 305-319, 1996. With permission.

REFERENCES

1. Mohr, H. and Schopfer, P., Biosynthetic metabolism, in Plant Physiology, Springer-Verlag, New York, 1995, chap. 18.

2. Pace, N. R., A molecular view of microbial diversity and the biosphere, Science, 276, 734-740, 1997.

3. Liu, Z., Carpenter, S. B., and Constantin, R. J., Camptothecin production in Camptotheca accuminata seedlings in response to shading and flooding, Can. J. Bot., 75, 368-373, 1997.

TABLE 3.6

Some Cloned Plant Genes Involved in Isoprenoid Biosynthesis

Clone type

Enzyme

Abietadiene Abies synthase grandis

5-epi-Aristolo- Nicotiana chene tabacum synthase

Organism Genea Genomic Absl

Eas1

(+)-8-Cadinene Gossypium Cdn1 synthase arboreum

Z-Carotene desaturase

ß-Carotene hydroxylase

Arabidopsis Zds1 thaliana

Capsicum Zds1

annuum Oryza Zds1

sativa Arabidopsis Chyb1 thaliana

ß-Carotene Haema- Bktl ketolase tococcus pluvialis

Chrysanthemyl Chrysanthe Cdsl pyrophosphat mum e synthase cinerariaef olium

Accession cDNA EST ID number

+ U50768

L04680

X96429

X95323 U23206 U23205 U27535 U38550

+ 139J10T7 T46272

+ 158J7T7 T88256

+ S14426_1A D48291

+ U58919

+ VBVPH03 F13822

+ VBVPH03 F13851

+ D45881

113995

Ref.

Stoffer-Vogel et al., 1996 Facchini & Chappell, 1992

Facchini & Chappell, 1992 Facchini & Chappell, 1992 Facchini & Chappell, 1992 Chen et al., 1996

Chen et al., 1996 Chen et al., 1995b Chen et al., 1995b Chen et al., 1995a Scolnik & Bartley,

1995c Newman et al.,

1994 Newman et al.,

1994 Albrecht et al.,

1995

Sasaki et al., 1994

1996

Höfte et al., 1993; Cooke et al., 1996 Kajiwara et al., 1995

Ellenberger et al., 1995

TABLE 3.6 (CONTINUED)

Some Cloned Plant Genes Involved in Isoprenoid Biosynthesis

Enzyme

Clone type

Organism Genea Genomic cDNA EST ID

P-Cyclohexenyl Capsicum carotenoid annuum epoxidase Farnesyl pyrophosphat thaliana e synthase

Arabidopsis Fps1;1

Fps1;1 Fps1;2

Artemisia Fpsl annua Capsicum Fps1

annuum Hevea Fpsl brasiliensi s

Lupinus Fpsl albus

Parthenium Fps1;1 argentatu m

Fps1;2 Zea mays Fps1

Geranylgeranyl Arabidopsis Gghy1 pyrophosphat thaliana e hydrogenase

Accession number

X91491

X75789

L46367 L46349 240M1T7 N65905 L46350 U36376 X84695 Z49786

U15777 U20771 X82542

X82543 L39789

+ 41D1T7

T13808

+ 117D18T7 T43273

FAFE38-1 Z26448

Ref.

Bouvier et al., 1966

Delourme et al., 1994

Cunillera et al.,

1996 Cunillera et al.,

1996 Newman et al.,

1994 Cunillera et al.,

1996 Matsushita et al.,

1996 Hugueney et al.,

1996 Adiwilaga & Kush, 1996

Attucci et al.,

1995a,b Attucci et al.,

1995a Pan et al., 1996

1995 Newman et al.,

1994; Addlesee et al., 1996 Newman et al., 1994; Addlesee et al., 1996

1996

TABLE 3.6 (CONTINUED)

Some Cloned Plant Genes Involved in Isoprenoid Biosynthesis

Clone type

Enzyme Organism Genea Genomic cDNA EST ID

Accession number

Oryza sativa

Gghy1

t 241A16T7 N6S672

t F10G11T7 N96606

t 1S0E22T7 T76292

t 1SSD1T7 T76S4S

t OBO27 F142S7

t OBO27 F14220

t 4D9T7P T04791

t 194L8T7 H7643S

t FA130 Z33939

t 17SF3T7 H36S92

t 93N1T7 T2129S

t FSG7T7 Nl9S906

t S1073S_4A D46208

t S11188_1A t S13017 4A

D4648S D47484

Ref.

Newman et al., 1994; Addlesee et al., 1996 Newman et al., 1994; Addlesee et al., 1996 Newman et al., 1994; Addlesee et al., 1996 Newman et al., 1994; Addlesee et al., 1996

Höfte et al., 1992; Addlesee et al., 1996 Höfte et al., 1992; Addlesee et al., 1996 Newman et al., 1994; Addlesee et al., 1996 Newman et al., 1994; Addlesee et al., 1996

Höfte et al., 1992; Addlesee et al., 1996 Newman et al., 1994; Addlesee et al., 1996 Newman et al., 1994; Addlesee et al., 1996 Newman et al., 1994; Addlesee et al., 1996 Sasaki et al., 1994

Sasaki et al., 1994 Sasaki et al., 1994

TABLE 3.6 (CONTINUED)

Some Cloned Plant Genes Involved in Isoprenoid Biosynthesis

Clone type

Enzyme

Organism Genea Genomic

Geranylgeranyl Arabidopsis pyrophosphat thaliana e synthase

Brassica campestris Capsicum annuum

Catharan-thus

Ggps1; 1

Ggps1; 2

Ggps1;

Ggps1;

Ggps1

Ggps1

Ggps1 Ggps1

Accession cDNA EST ID number t L25813

t F0958

U44876

U44877

L22347

L37477

X80267

P80042 X92893

Ref.

Scolnik & Bartley, 1994

Scolnik & Bartley,

1996 Scolnik & Bartley, 1996

Bartley et al., 1994

Badillo et al., 1995

Kuntz et al., 1992 Bantignies et al., 1996

Lupinus Ggpsl albus Sinapis alba Ggpsl Geranylgeranyl Arabidopsis Ggrl pyrophosphat thaliana e synthase-related protein

U15778 Aitken et al., 1995

Hexaprenyl- Arabidopsis Hxsr1 pyrophosphat thaliana e synthase-related protein t X98795

t 42G9T7 L40577

t 121A16T7 T43543

t 145E2T7 T46450

t 42G9T7 T04590

t 221F20T7 N38654

t 192H13T7 R90311

t 193N1l9T7 H76026

t 124L9T7 T44803

Welsch et al., 1996 Scolnik & Bartley, 1995a

Newman et al.,

1994 Newman et al.,

1994 Newman et al.,

1994 Newman et al.,

1994 Newman et al., 1994

Newman et al.,

1994 Newman et al., 1994

t roseus table 3.6 (CONTINUED)

Some Cloned Plant Genes Involved in Isoprenoid Biosynthesis

Enzyme

Clone type

Organism Genea Genomic cDNA EST ID

Cyanophor PreA a paradoxa Isopentenyl- Arabidopsis Ipi1;1 pyrophosphat thaliana e isomerase

Ipi1;1 Ipi1;2 Ipi1;2

ent-Kaurene synthase keto-Carotenoid synthase

4s-Limonene synthase

Clarkia breweri

Clarkia xantiana Oryza sativa Cucurbita maxima Capsicum annuum

Mentha spicata

Ipi1;1

Ipi1;2 Ipi1;1

Ipi1;1

Eks1

Kcs1

Accession number

M61174

1G2T7P T04125

168H5T7 R65272

U47324 U49259 11715T7 T43292

173I16T7 H36484

173J16T7 H36082

VBVNC09 Z46571

+ VBVNC09 Z46678

+ X82627

U48963 U48962

+ C1268_2A D28222 U43904 X77289

Lim1

X76165

X78030 L13459

Ref.

Michalowski et al., 1991

U48961 Blanc et al., 1996

Newman et al.,

1994 Newman et al.,

1994 Leustek, 1996 Leustek, 1996 Newman et al.,

1994 Newman et al.,

1994 Newman et al.,

1994 Höfte et al., 1992; Cooke et al., 1996 Höfte et al., 1992; Cooke et al., 1996 Blanc & Pichersky, 1995 Blanc et al., 1996 Blanc et al., 1996

Sasaki et al., 1994

Yamaguchi et al.,

1996 Deruere et al., 1994

Bouvier et al., 1994

Houlne et al., 1994 Colby et al., 1993

TABLE 3.6 (CONTINUED)

Some Cloned Plant Genes Involved in Isoprenoid Biosynthesis

Enzyme s-Linalool synthase Lycopene cyclase (ß)

Lycopene cyclase (e)

Clone type

Organism Genea Genomic cDNA EST ID

Accession number

Clarkia Lisl breweri Arabidopsis Lcybl thaliana

Mevalonate 5-pyrophosphat e decarboxylase Mevalonate kinase

Capsicum annuum Lycoper-siscon esculentu m

Nicotiana tabacum Arabidopsis thaliana Brassica campestris Brassica napus Solanum tuberosum Arabidopsis thaliana

Lcybl Lcybl

Lcybl Lcyel Lcyel Lcyel Lcyel Mpdl

+ U58314

+ L40176

+ VBVYH06 Z29210

+ VBVYH06 Z29211

+ OAO370 F13561

+ OAO370 Z33983

+ 214C18T7 N37968

+ U50739

+ X86221

+ X86452

+ X81787

+ U50738

+ F1516 L46452

+ khkh05l-l H07750

+ gl6 R27545

+ 177G1T7 H36293

Ref.

Dudareva et al.,

1996 Scolnik & Bartley,

1995b Höfte et al., 1992; Cooke et al., 1996 Höfte et al., 1992; Cooke et al., 1996 Höfte et al., 1992; Cooke et al., 1996 Höfte et al., 1992; Cooke et al., 1996 Newman et al.,

1994 Cunningham et al., 1996 Hugueney et al.,

1995

Pecker et al., 1996

Pecker et al., 1996

Cunningham et al., 1996 Lim et al., 1996

Sohn et al., 1995

Provart, 1996

Newman et al., 1994

Arabidopsis Mkil thaliana

X77793 Riou et al., 1994

TABLE 3.6 (CONTINUED)

Some Cloned Plant Genes Involved in Isoprenoid Biosynthesis

Clone type

Enzyme

Organism Genea Genomic

Oxidosqualene Arabidopsis Sqc1 cyclase thaliana

(cycloartenol synthase)

Oryza sativa

Phytoene desaturase

Zea mays Arabidopsis Pdsl thaliana Capsicum Pdsl annuum Glycine max Lycope-rsicon esculentu

Pds1

Pds1

Accession cDNA EST ID number + 124O12T7 T44374

+ U02555

Ref.

Newman et al.,

1994 Corey et al., 1993

+ 103D18T7 T22249

+ C2l901_1A D23492

+ S14946_1A D48622

+ csuh00265 T18827

+ L16237

+ X68058

+ M64704

+ M88683

Newman et al., 1994

Sasaki et al., 1994

Sasaki et al., 1994 Keith et al., 1993 Scolnik & Bartley,

1993 Hugueney et al.,

1992

Bartley et al., 1991

Giuliano et al.,

1993

Phytoene synthase

Narcissus Pdsl pseudonar cissus Nicotiana Pdsl benthamia na

Oryza Pdsl sativa Zea mays Pdsl

Arabidopsis Psy1;1

thaliana Capsicum Psy1;1

annuum Cucumis Psy1;1 mela

X59948 X71023 X78271 X78815

U19262

+ C2722_1A D23378 L39266

U37285 L25812

X68017

Z37543

Pecker et al., 1992 Mann et al., 1994 Aracri et al., 1994 Albabili & Beyer, 1996

Kumagai et al., 1995

Sasaki et al., 1994

Hable & Oishi,

1995 Li et al., 1996 Bartley & Scolnik,

1994

Romer et al., 1993

Karvouni et al.,

1995

TABLE 3.6 (CONTINUED)

Some Cloned Plant Genes Involved in Isoprenoid Biosynthesis

Enzyme

Squalene epoxidase

Squalene synthase

Clone type

Organism Genea Genomic cDNA EST ID

Lycoper- Psy1;1 +

sicon esculentu m

Narcissus Psy1;1 pseudo-narcissus Oryza Psyl sativa

Zea mays Psy1

Arabidopsis Pqp1 thaliana

Arabidopsis Sqs1 thaliana

Nicotiana Sqsl bentha-miana

Taxadiene Taxus Tsyl synthase brevifolia

Vetispiradiene Hyoscyamu Vsyl synthase s muticus

Accession number

A21360

Ref.

Bird et al., 1991

M84744 Y00S21 X60441 L23424

X60440 X78814

Bartley et al., 1992 Ray et al., 1987 Ray et al., 1992 Bartley & Scolnik,

1993 Ray et al., 1992 Schledz & Beyer, 1996

t S15075_1A D48697 Sasaki et al., 1994

t S1437S_1A D482S1

t U32636

t 2S0F2T7 W433S3

t 129F12T7 T44667

t 191M9T7A N64916

t X86692

t D29017

t 208D19T7 N3713S

t 229L21T7 N6S466

t U46000

t U48796

t U20188

t U20189

Sasaki et al., 1994 Buckner et al.,

1995 Newman et al.,

1994 Newman et al.,

1994 Newman et al.,

1994

Kribii et al., 1995

Nakashima et al.,

1995 Newman et al.,

1994 Newman et al., 1994

Hanley et al., 1996

Wildung & Croteau, 1994 Back & Chappell, 199S

Back & Chappell, 199S

TABLE 3.6 (CONTINUED)

Some Cloned Plant Genes Involved in Isoprenoid Biosynthesis

Enzyme

Clone type

Accession

Organism Genea Genomic cDNA EST ID number

Ref.

Violaxanthin Arabidopsis Vde1 de-epoxidase thaliana

Zeaxanthin epoxidase

Lactuca Vde1 sativa v. longifolia Arabidopsis Zep1

thaliana Brassica Zep1

campestris Nicotiana Zep1 tabacum

U20190 Back & Chappell,

1995

207C23T7 N37612 Newman et al., 1994

U39452 Lukowitz et al.,

1996

U44133 Bugos &

Yamamoto, 1996a U31462 Bugos &

Yamamoto, 1996b

133D24T7 T45502 Newman et al., 1994

F0164 L37996 Lim et al., 1996 X95732 Marin et al., 1996

a Designations for genes in isoprenoid metabolisms are currently under review by a working group of the Commission on Plant Gene Nomenclature.

From Scolnik, P. A. and Bartley, G. E., Plant Mol. Bio. Rep., 14, 305-319, 1996. With permission.

4. O'Brien, J., The tree of life, Your Health, 6 August, 60-63, 1996.

4a. Teeri, J. A., personal communication 1997.

4b. Liu, Zhijun, personal communication 1997.

5. Larcher, W., Chemical interactions mediated by bioactive plant substances, in Physiological Plant Ecology, 3rd ed., Springer-Verlag, New York, 1995, sect. 1.1.4.2.

6. Liu, Z. and Adams, J., Camptothecin yield and distribution within Camptotheca accuminata trees cultivated in Louisiana, Can. J. Bot., 74, 360-365, 1996.

7. Funk, C., Lewinsohn, E., Stofer Vogel, B., Steele, C. L., and Croteau, R., Regulation of oleoresinosis in grand fir (Abies grandis): coordinate induction of monot-erpene and diterpene cyclases and two cytochrome P450-dependent diterpenoid hydroxylases by stem wounding, Plant Physiol., 106, 999-1005, 1994.

8. Alborn, H. T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., and Tumlinson, J. H., An elicitor of plant volatiles from beet armyworm oral secretion, Science, 276, 945-949, 1997.

9. Anderson, J. W. and Beardall, J., Enzymes and post-translational enzyme regulation, in Molecular Activities of Plant Cells, An Introduction to Plant Biochemistry, Blackwell Scientific Publications, Oxford, U.K., 1991, chap. 5.

Duke, J., Commentary — novel psychotherapeutic drugs: a role for ethnobotany, Psychopharm. Bull., 31, 177-182, 1995.

Schery, R. W., Latex products, in Plants for Man, 2nd ed., Prentice-Hall, Engle-wood Cliffs, NJ, 1972, chap. 8.

Weaver, R. J., Size control and related phenomena, in Plant Growth Substances in Agriculture, W. H. Freeman and Company, San Francisco, 1972, chap. 11. Kaufman, P. B. and Dayanandan, P., Gibberellin-induced growth in Avena inter-nodes, in The Biochemistry and Physiology of Gibberellins, Vol. I, Crosier, A., Ed., Praeger Publishers, New York, 1983, p 129-157.

Jacobsen, J. V., Gubler, F., and Chandler, P. M., Gibberellin action in germinated cereal grains, in Plant Hormones, Physiology, Biochemistry and Molecular Biology, Davies, P. J., Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995, chap. D-3.

Tabata, M. and Fujita, Y., Production of shikonin by plant cell cultures, in Biotechnology in Plant Science: Relevance to Agriculture in the Eighties, Zaitlin, M., Day, P., and Hollaender, A., Eds., Academic Press, New York, 1985, 207-218. Funk, C. and Brodelius, P. E., Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr. IV. Induction of vanillic acid formation, Plant Physiol., 99, 256-262, 1992.

Kaufman, P. B., Ghosheh, N. S., LaCroix, J. D., Soni, S. L., and Ikuma, H., Regulation of invertase levels in Avena stem segments by gibberellic acid, sucrose, glucose, and fructose, Plant Physiol., 52, 221-228, 1973. Kaufman, P. B., Duke, J. A., Brielmann, H., Boik, J., and Hoyt, J. E., A comparative survey of leguminous plants as sources of the isoflavones, genistein, and daidzein: implications for human nutrition and health, J. Altern. Complem. Med., 3, 7-12, 1997.

Boik, J., Dietary non-nutrient factors and their effects on cancer, in Cancer and Natural Medicine. A Textbook of Basic Science and Clinical Research, Oregon Medical Press, Princeton, MN, 1996, chap. 14.

Redenbaugh, K., Hiatt, W., Martineau, B., Kramer, M., Sheehy, R., Sanders, R., Houck, C., and Emlay, D., Safety Assessment of Genetically Engineered Fruits and Vegetables. A Case Study of the FLAVR SAVR™ Tomato, CRC Press, Boca Raton, FL, 1992.

Rissler, J. and Mellon, M., The Ecological Risks of Engineered Crops, The Massachusetts Institute of Technology Press, Cambridge, MA, 1996. Krimsky, S. and Wrubel, R., Agricultural Biotechnology and the Environment. Science, Policy, and Social Issues, University of Illinois Press, Urbana, IL, 1996. Scolnik, P. A. and Bartley, G. E., A table of some cloned plant genes involved in isoprenoid biosynthesis, Plant Mol. Biol. Rep., 14, 305-319, 1996. Wu, W., Welsh, M. J., Kaufman, P. B., and Zhang, H. H., Methods in Gene Biotechnology, CRC Press, Boca Raton, FL., 1997.

Cornish, K. and Siler, D. J., Characterization of cis-prenyl transferase activity localized in a buoyant fraction of rubber particles from Ficus elastica latex, Plant Physiol. Biochem., 34, 337-384, 1996.

Potera, C., Genetic engineering improves natural rubber, Gene. Eng. News, 16, 1, 1996.

Was this article helpful?

0 0
Healthy Chemistry For Optimal Health

Healthy Chemistry For Optimal Health

Thousands Have Used Chemicals To Improve Their Medical Condition. This Book Is one Of The Most Valuable Resources In The World When It Comes To Chemicals. Not All Chemicals Are Harmful For Your Body – Find Out Those That Helps To Maintain Your Health.

Get My Free Ebook


Post a comment