The Parkinson's-Reversing Breakthrough

Parkinson Disease Diet

Get Instant Access

1. Hamani C, Richter E, Schwalb JM, Lozano AM. Bilateral subthalamic nucleus stimulation for Parkinson's disease: a systematic review of the clinical literature. Neurosurgery 2005; 56(6):1313-1321; discussion 1321-1324.

2. Gentil M, Garcia-Ruiz P, Pollak P, Benabid AL. Effect of bilateral deep-brain stimulation on oral control of patients with parkinsonism. Eur Neurol 2000; 44(3):147-152.

3. Dromey C, Kumar R, Lang AE, Lozano AM. An investigation of the effects of subthalamic nucleus stimulation on acoustic measures of voice. Mov Disord 2000; 15(6):1132-1138.

4. Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson's disease. Brain 2000; 123(Pt 10):2091-2108.

5. Santens P, De Letter M, Van Borsel J, De Reuck J, Caemaert J. Lateralized effects of subthalamic nucleus stimulation on different aspects of speech in Parkinson's disease. Brain Lang 2003; 87(2):253-258.

6. Burkhard PR, Vingerhoets FJ, Berney A, Bogousslavsky J, Villemure JG, Ghika J. Suicide after successful deep brain stimulation for movement disorders. Neurology 2004; 63(11):2170-2172.

7. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003; 24(2):197-211.

8. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12(10):366-375.

9. Fenelon G, Francois C, Percheron G, Yelnik J. Topographic distribution of pallidal neurons projecting to the thalamus in macaques. Brain Res 1990; 520(1-2):27-35.

10. Mengual E, de las Heras S, Erro E, Lanciego JL, Gimenez-Amaya JM. Thalamic interaction between the input and the output systems of the basal ganglia. J Chem Neuroanat 1999; 16(3):187-200.

11. Hammond C, Rouzaire-Dubois B, Feger J, Jackson A, Crossman AR. Anatomical and electrophysiological studies on the reciprocal projections between the subthalamic nucleus and nucleus tegmenti pedunculopontinus in the rat. Neuroscience 1983; 9(1): 41-52.

12. Obeso JA, Rodriguez MC, DeLong MR. Basal ganglia pathophysiology. A critical review. Adv Neurol 1997; 74:3-18.

13. Obeso JA, Rodriguez-Oroz MC, Rodriguez M, et al. Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci 2000; 23(suppl 10):S8-S19.

14. Pahapill PA, Lozano AM. The pedunculopontine nucleus and Parkinson's disease. Brain 2000; 123(Pt 9):1767-1783.

15. Mink JW, Thach WT. Basal ganglia motor control. I. Nonexclusive relation of pallidal discharge to five movement modes. J Neurophysiol 1991; 65(2):273-300.

16. Mink JW, Thach WT. Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters J Neuro-physiol 1991; 65(2):301-329.

17. Mink JW, Thach WT. Basal ganglia motor control. III. Pallidal ablation: normal reaction time, muscle cocontraction, and slow movement J Neurophysiol 1991; 65(2):330-351.

18. Nandi D, Liu X, Winter JL, Aziz TZ, Stein JF. Deep brain stimulation of the pedunculopontine region in the normal non-human primate J Clin Neurosci 2002; 9(2):170-174.

19. Jenkinson N, Nandi D, Miall RC, Stein JF, Aziz TZ. Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. Neuroreport 2004; 15(17):2621-2624.

20. Mazzone P, Lozano A, Stanzione P, et al. Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson's disease. Neuroreport 2005; 16(17):1877-1881.

21. Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson's disease. Neuroreport 2005; 16(17):1883-1887.

22. Katayama Y, Fukaya C, Yamamoto T. Control of poststroke involuntary and voluntary movement disorders with deep brain or epidural cortical stimulation. Stereotact Funct Neurosurg 1997; 69(1-4 Pt 2):73-79.

23. Garcia-Larrea L, Peyron R, Mertens P, et al. Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain 1999; 83(2):259-273.

24. Canavero S, Bonicalzi V. Cortical stimulation for parkinsonism. Arch Neurol 2004; 61(4):606.

25. Canavero S, Paolotti R, Bonicalzi V, et al. Extradural motor cortex stimulation for advanced Parkinson disease. Report of two cases. J Neurosurg 2002; 97(5):1208-1211.

26. Canavero S, Paolotti R. Extradural motor cortex stimulation for advanced Parkinson's disease: case report. Mov Disord 2000; 15(1):169-171.

27. Nakao N, Nakai E, Nakai K, Itakura T. Ablation of the subthalamic nucleus supports the survival of nigral dopaminergic neurons after nigrostriatal lesions induced by the mito-chondrial toxin 3-nitropropionic acid. Ann Neurol 1999; 45(5):640-651.

28. Hilker R, Portman AT, Voges J, et al. Disease progression continues in patients with advanced Parkinson's disease and effective subthalamic nucleus stimulation. J Neurol Neurosurg Psychiatry 2005; 76(9):1217-1221.

29. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neu-rotrophic factor for midbrain dopaminergic neurons. Science 1993; 260(5111):1130-1132.

Schaar DG, Sieber BA, Dreyfus CF, Black IB. Regional and cell-specific expression of GDNF in rat brain. Exp Neurol 1993; 124(2):368-371.

Beck KD, Valverde J, Alexi T, et al. Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 1995; 373(6512): 339-341.

Tomac A, Lindqvist E, Lin LF, et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 1995; 373(6512):335-339.

Gash DM, Zhang Z, Ovadia A, et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 1996; 380(6571):252-255.

Olson L. Toward trophic treatment in parkinsonism: a primate step. Nat Med 1996; 2(4):400-401.

Lapchak PA, Gash DM, Collins F, Hilt D, Miller PJ, Araujo DM. Pharmacological activities of glial cell line-derived neurotrophic factor (GDNF): preclinical development and application to the treatment of Parkinson's disease. Exp Neurol 1997; 145(2 Pt 1):309-321. Lapchak PA, Gash DM, Jiao S, Miller PJ, Hilt D. Glial cell line-derived neurotrophic factor: a novel therapeutic approach to treat motor dysfunction in Parkinson's disease. Exp Neurol 1997; 144(1):29-34.

Gill SS, Patel NK, O'Sullivan K, et al. Intraparenchymal putaminal administration of glialderived neurotrophic factor in the treatment of advanced Parkinson's disease. Neurology 2000; 58(suppl 3):A241.

Kordower JH, Palfi S, Chen EY, et al. Clinicopathological findings following intraven-tricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. Ann Neurol 1999; 46(3):419-424.

Nutt JG, Burchiel KJ, Comella CL, et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 2003; 60(1):69-73. Gill SS, Patel NK, Hotton GR, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003; 9(5):589-595. Lang AE, Gill S, Patel NK, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006; 59(3): 459-466.

Kotzbauer PT, Lampe PA, Heuckeroth RO, et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 1996; 384(6608):467-470.

Horger BA, Nishimura MC, Armanini MP, et al. Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci 1998; 18(13): 4929-4937.

Oiwa Y, Yoshimura R, Nakai K, Itakura T. Dopaminergic neuroprotection and regeneration by neurturin assessed by using behavioral, biochemical and histochemical measurements in a model of progressive Parkinson's disease. Brain Res 2002; 947(2):271-283. Quartu M, Serra MP, Manca A, Mascia F, Follesa P, Del Fiacco M. Neurturin, persephin, and artemin in the human pre- and full-term newborn and adult hippocampus and fascia dentata. Brain Res 2005; 1041(2):157-166.

Masure S, Geerts H, Cik M, et al. Enovin, a member of the glial cell-line-derived neu-rotrophic factor (GDNF) family with growth promoting activity on neuronal cells. Existence and tissue-specific expression of different splice variants. Eur J Biochem 1999; 266(3):892-902.

Baloh RH, Tansey MG, Lampe PA, et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 1998; 21(6):1291-1302.

Clarke DJ, Brundin P, Strecker RE, Nilsson OG, Bjorklund A, Lindvall O. Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry. Exp Brain Res 1988; 73(1):115-126.

Brundin P, Strecker RE, Widner H, et al. Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: immunological aspects, spontaneous and drug-induced behaviour, and dopamine release. Exp Brain Res 1988; 70(1):192-208. Sladek JR, Collier TJ, Haber SN, et al. Reversal of parkinsonism by fetal nerve cell transplants in primate brain. Ann NY Acad Sci 1987; 495:641-657.

51. Bankiewicz KS, Plunkett RJ, Jacobowitz DM, et al. The effect of fetal mesencephalon implants on primate MPTP-induced parkinsonism. Histochemical and behavioral studies. J Neurosurg 1990; 72(2):231-244.

52. Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 1979; 204(4393):643-647.

53. Brundin P, Nilsson OG, Strecker RE, Lindvall O, Astedt B, Bjorklund A. Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson's disease. Exp Brain Res 1986; 65(1):235-240.

54. Bankiewicz KS, Plunkett RJ, Mefford I, Kopin IJ, Oldfield EH. Behavioral recovery from MPTP-induced parkinsonism in monkeys after intracerebral tissue implants is not related to CSF concentrations of dopamine metabolites. Prog Brain Res 1990; 82:561-571.

55. Freed CR, Breeze RE, Rosenberg NL, et al. Transplantation of human fetal dopamine cells for Parkinson's disease. Results at 1 year. Arch Neurol 1990; 47(5):505-512.

56. Lindvall O, Brundin P, Widner H, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 1990; 247(4942):574-577.

57. Kordower JH, Freeman TB, Snow BJ, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N Engl J Med 1995; 332(17):1118-1124.

58. Freed CR, Breeze RE, Rosenberg NL, et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. N Engl J Med 1992; 327(22):1549-1555.

59. Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med 2001; 344(10):710-719.

60. Olanow CW, Goetz CG, Kordower JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol 2003; 54(3):403-414.

61. Piccini P, Pavese N, Hagell P, et al. Factors affecting the clinical outcome after neural transplantation in Parkinson's disease. Brain 2005; 128(Pt 12):2977-2986.

62. Olanow CW, Kordower JH, Freeman TB. Fetal nigral transplantation as a therapy for Parkinson's disease. Trends Neurosci 1996; 19(3):102-109.

63. Redmond DEJ, Naftolin F, Collier TJ, et al. Cryopreservation, culture, and transplantation of human fetal mesencephalic tissue into monkeys. Science 1988; 242(4879):768-771.

64. Redmond DE, Leranth C, Spencer DD, et al. Fetal neural graft survival. Lancet 1990; 336(8718):820-822.

65. Lindvall O, Kokaia Z. Stem cell therapy for human brain disorders. Kidney Int 2005; 68(5):1937-1939.

66. Paul G. Cell transplantation for patients with Parkinson's disease. Handb Exp Pharmacol 2006; 174:361-388.

67. Snyder BJ, Olanow CW. Stem cell treatment for Parkinson's disease: an update for 2005. Curr Opin Neurol 2005; 18(4):376-385.

68. Perrier AL, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 2004; 101(34):12,543-12,548.

69. Bjorklund LM, Sanchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002; 99(4):2344-2349.

70. Takagi Y, Takahashi J, Saiki H, et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 2005; 115(1):102-109.

71. Brederlau A, Correia AS, Anisimov SV, et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 2006; 24(6):1433-1440.

72. Ben-Hur T, Idelson M, Khaner H, et al. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 2004; 22(7):1246-1255.

73. Torres EM, Monville C, Lowenstein PR, Castro MG, Dunnett SB. Delivery of sonic hedgehog or glial derived neurotrophic factor to dopamine-rich grafts in a rat model of Parkinson's disease using adenoviral vectors. Increased yield of dopamine cells is dependent on embryonic donor age. Brain Res Bull 2005; 68(1-2):31-41.

Studer L, Tabar V, McKay RD. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1998; 1(4):290-295. Wang X, Lu Y, Zhang H, et al. Distinct efficacy of pre-differentiated versus intact fetal mesencephalon-derived human neural progenitor cells in alleviating rat model of Parkinson's disease. Int J Dev Neurosci 2004; 22(4):175-183.

Parati EA, Bez A, Ponti D, Sala S, Pozzi S, Pagano SF. Neural stem cells. Biological features and therapeutic potential in Parkinson's disease. J Neurosurg Sci 2003; 47(1): 8-17.

Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290(5497):1779-1782.

Toma JG, Akhavan M, Fernandes KJ, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001; 3(9):778-784.

Fu YS, Cheng YC, Lin MY, et al. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 2006; 24(1):115-124.

Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(6893):41-49.

Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416(6880):542-545.

Freese A, Stern M, Kaplitt MG, et al. Prospects for gene therapy in Parkinson's disease. Mov Disord 1996; 11(5):469-488.

Horellou P, Brundin P, Kalen P, Mallet J, Bjorklund A. In vivo release of dopa and dopamine from genetically engineered cells grafted to the denervated rat striatum. Neuron 1990; 5(4):393-402.

Horellou P, Marlier L, Privat A, Mallet J. Behavioural effect of engineered cells that synthesize l-dopa or dopamine after grafting into the rat neostriatum. Eur J Neurosci 1990; 2(1):116-119.

Fisher LJ, Jinnah HA, Kale LC, Higgins GA, Gage FH. Survival and function of intras-triatally grafted primary fibroblasts genetically modified to produce L-dopa. Neuron 1991; 6(3):371-380.

During MJ, Naegele JR, O'Malley KL, Geller AI. Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science 1994; 266(5189):1399-1403.

Sanchez-Pernaute R, Harvey-White J, Cunningham J, Bankiewicz KS. Functional effect of adeno-associated virus mediated gene transfer of aromatic L-amino acid decarboxy-lase into the striatum of 6-OHDA-lesioned rats. Mol Ther 2001; 4(4):324-330. Bencsics C, Wachtel SR, Milstien S, Hatakeyama K, Becker JB, Kang UJ. Double trans-duction with GTP cyclohydrolase I and tyrosine hydroxylase is necessary for spontaneous synthesis of L-DOPA by primary fibroblasts. J Neurosci 1996; 16(14):4449-4456. Kang UJ. Potential of gene therapy for Parkinson's disease: neurobiologic issues and new developments in gene transfer methodologies. Mov Disord 1998; 13(suppl 1):59-72. Fan DS, Ogawa M, Fujimoto KI, et al. Behavioral recovery in 6-hydroxydopamine-lesioned rats by cotransduction of striatum with tyrosine hydroxylase and aromatic L-amino acid decarboxylase genes using two separate adeno-associated virus vectors. Hum Gene Ther 1998; 9(17):2527-2535.

Sun M, Kong L, Wang X, et al. Coexpression of tyrosine hydroxylase, GTP cyclohydro-lase I, aromatic amino acid decarboxylase, and vesicular monoamine transporter 2 from a helper virus-free herpes simplex virus type 1 vector supports high-level, long-term biochemical and behavioral correction of a rat model of Parkinson's disease. Hum Gene Ther 2004; 15(12):1177-1196.

Carlsson T, Winkler C, Burger C, et al. Reversal of dyskinesias in an animal model of Parkinson's disease by continuous L-DOPA delivery using rAAV vectors. Brain 2005; 128(Pt 3):559-569.

During MJ, Samulski RJ, Elsworth JD, et al. In vivo expression of therapeutic human genes for dopamine production in the caudates of MPTP-treated monkeys using an AAV vector. Gene Ther 1998; 5(6):820-827.

94. Muramatsu S, Fujimoto K, Ikeguchi K, et al. Behavioral recovery in a primate model of Parkinson's disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther 2002; 13(3):345-354.

95. Kordower JH. In vivo gene delivery of glial cell line-derived neurotrophic factor for Parkinson's disease. Ann Neurol 2003; 53(suppl 3):S120-S132; discussion S132-S134.

96. Betchen SA, Kaplitt M. Future and current surgical therapies in Parkinson's disease. Curr Opin Neurol 2003; 16 (4):487-493.

97. Monville C, Torres E, Thomas E, et al. HSV vector-delivery of GDNF in a rat model of PD: partial efficacy obscured by vector toxicity. Brain Res 2004; 1024(1-2):1-15.

98. Bensadoun JC, Deglon N, Tseng JL, Ridet JL, Zurn AD, Aebischer P. Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson's disease using GDNF. Exp Neurol 2000; 164(1):15-24.

99. Rosenblad C, Granborg M, Hansen C, et al. In vivo protection of nigral dopamine neurons by lentiviral gene transfer of the novel GDNF-family member neublastin/artemin. Mol Cell Neurosci 2000; 15(2):199-214.

100. Brizard M, Carcenac C, Bemelmans AP, Feuerstein C, Mallet J, Savasta M. Functional reinnervation from remaining DA terminals induced by GDNF lentivirus in a rat model of early Parkinson's disease. Neurobiol Dis 2006; 21(1):90-101.

101. Dowd E, Monville C, Torres EM, et al. Lentivector-mediated delivery of GDNF protects complex motor functions relevant to human Parkinsonism in a rat lesion model. Eur J Neurosci 2005; 22(10):2587-2595.

102. Fjord-Larsen L, Johansen JL, Kusk P, et al. Efficient in vivo protection of nigral dopaminergic neurons by lentiviral gene transfer of a modified Neurturin construct. Exp Neurol 2005; 195(1):49-60.

103. Sun M, Kong L, Wang X, Lu XG, Gao Q, Geller AI. Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson's disease. Brain Res 2005; 1052(2):119-129.

104. Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 2000; 290(5492):767-773.

105. Palfi S, Leventhal L, Chu Y, et al. Lentivirally delivered glial cell line-derived neu-rotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J Neurosci 2002; 22(12):4942-4954.

106. Luo J, Kaplitt MG, Fitzsimons HL, et al. Subthalamic GAD gene therapy in a Parkinson's disease rat model. Science 2002; 298(5592):425-429.

107. During MJ, Kaplitt MG, Stern MB, Eidelberg D. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum Gene Ther 2001; 12(12):1589-1591.

108. Dekker MC, Bonifati V, van Duijn CM. Parkinson's disease: piecing together a genetic jigsaw. Brain 2003; 126(Pt 8):1722-1733.

109. Lo Bianco C, Schneider BL, Bauer M, et al. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson's disease. Proc Natl Acad Sci USA 2004; 101(50):17,510-17,515.

110. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 2002; 295(5556): 865-868.

111. Dong Z, Wolfer DP, Lipp HP, B├╝eler H. Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther 2005; 11(1):80-88.

112. Pardridge WM. Tyrosine hydroxylase replacement in experimental Parkinson's disease with transvascular gene therapy. NeuroRx 2005; 2(1):129-138.

113. Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 2003; 3(2):90-105.

114. Zhang Y, Schlachetzki F, Zhang YF, Boado RJ, Pardridge WM. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism with intravenous nonviral gene therapy and a brain-specific promoter. Hum Gene Ther 2004; 15(4):339-350.

Was this article helpful?

0 0
Brain Blaster

Brain Blaster

Have you ever been envious of people who seem to have no end of clever ideas, who are able to think quickly in any situation, or who seem to have flawless memories? Could it be that they're just born smarter or quicker than the rest of us? Or are there some secrets that they might know that we don't?

Get My Free Ebook

Post a comment