References

The Parkinson's-Reversing Breakthrough

Is There A Cure for Parkinson Disease

Get Instant Access

1. Jellinger K. Pathology of Parkinson's syndrome. In: Calne, D.B., ed. Handbook of Experimental Pharmacology. Vol. 88. Berlin: Springer, 1988:47-112.

2. Birkmayer W, Hornykiewicz O. Der 1-3,4-dioxy-phenylanin (l-DOPA)-effek bei der Parkinson-akinesia. Klin Wochenschr 1961; 73:787.

Ehringer H, Hornykiewicz O. Verteilung von noradrenalin und dopamin (3-hydroxytyramin) in gehrindes menschen und ihr verhalten bei erkrankungen des extrapyramidalen systems. Klin Wochenschr 1960; 38:1238-1239.

Schultz W. Depletion of dopamine in the striatum as an experimental model of Parkinsonism: direct effects and adaptive mechanisms. Prog Neurobiol 1982; 18(2-3):121-166. Glinka Y, Youdim MBH. Mechanisms of 6-hydroxydopamine neurotoxicity. J Neural Transm 1997; 50:55-66.

Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 2001; 65(2):135-172.

Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharm 1968; 5(1):107-110.

Ungerstedt U, Arbuthnott GW. Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res 1970; 24:485-493.

Ungerstedt U. Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand 1971; 367(suppl):69-93. Sauer H, Oertel W. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neurosci 1994; 59(2):401-415. Przedborski S, Levivier M, Jiang H, et al. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intranigrostriatal injection of 6-hydroxydopamine. Neurosci 1995; 67(3):631-647.

Yuan H, Sarre S, Ebinger G, et al. Histological, behavioural and neurochemical evaluation of medial forebrain bundle and striatal 6-OHDA lesions as rat models of Parkinson's disease. J Neurosci Methods 2005; 144(1):35-45.

Schwarting RK, Huston JP. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol 1996; 49(3): 215-266.

Schwarting RK, Huston JP. The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 1996; 20(2-3):275-331.

Metz GA, Whishaw IQ. Drug-induced rotation intensity in unilateral dopamine-depleted rats is not correlated with end point or qualitative measures of forelimb or hindlimb motor performance. Neurosci 2002; 111(2):325-336.

Olds ME, Jacques DB, Kopyov O. Relation between rotation in the 6-OHDA lesioned rat and dopamine loss in striatal and substantia nigra subregions. Synapse 2006; 59(8): 532-544.

Schallert T, Tillerson J. Interventive strategies for degeneration of dopamine neurons in parkinsonism: optimizing behavioral assessment of outcome. In: Emerich D, Dean R, Sanberg P, eds. Central Nervous System Diseases. Totawa, NJ: Humana Press, 2000: 131-151.

Metz GA, Tse A, Ballermann M, et al. The unilateral 6-OHDA rat model of Parkinson's disease revisited: an electromyographic and behavioural analysis, Eur J Neurosci 2005; 22(3):735-744.

Cenci MA, Whishaw IQ, Schallert T. Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 2002; 3(7):574-579.

Monville C, Torres EM, Dunnett SB. Validation of the l-dopa-induced dyskinesia in the 6-OHDA model and evaluation of the effects of selective dopamine receptor agonists and antagonists. Brain Res Bull 2005; 68(1-2):16-23.

Papa SM, Engber TM, Kask AM, et al. Motor fluctuations in levodopa treated parkinsonian rats: relation to lesion extent and treatment duration. Brain Res 1994; 662(1-2):69-74. Papa SM, Boldry RC, Engber TM, et al. Reversal of levodopa-induced motor fluctuations in experimental parkinsonism by NMDA receptor blockade. Brain Res 1995; 701(1-2): 13-18.

Chase TN, Engber TM, Mouradian MM. Contribution of dopaminergic and gluta-matergic mechanisms to the pathogenesis of motor response complications in Parkinson's disease. Adv Neurol 1996; 69:497-501.

24. Chase TN, Konitsiotis S, Oh JD. Striatal molecular mechanisms and motor dysfunction in Parkinson's disease. Adv Neurol 2001; 86:355-360.

25. Oh JD, Russell D, Vaughan CL, et al. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration. Brain Res 1998; 813(1):150-159.

26. Henry B, Crossman AR, Brotchie JM. Characterization of enhanced behavioral responses to L-DOPA following repeated administration in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease. Exp Neurol 1998; 151(2):334-342.

27. Zigmond MJ, Abercrombie ED, Berger TW, et al. Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. Trends Neurosci 1990; 13(7):290-295.

28. Winkler C, Kirik D, Bjorklund A, et al. Transplantation in the rat model of Parkinson's disease: ectopic versus homotopic graft placement. Prog Brain Res 2000; 127:233-265.

29. Nikkhah G, Olsson M, Eberhard J, et al. A microtransplantation approach for cell suspension grafting in the rat Parkinson model: a detailed account of the methodology, Neurosci 1994; 63(1):57-72.

30. Rodriguez M, Barroso-Chinea P, Abdala P, et al. Dopamine cell degeneration induced by intraventricular administration of 6-hydroxydopamine in the rat: similarities with cell loss in Parkinson's disease. Exp Neurol 2001; 169(1):163-181.

31. Eslamboli A. Marmoset monkey models of Parkinson's disease: which model, when and why? Brain Res Bull 2005; 68(3):140-149.

32. Annett LE, Rogers DC, Hernandez TD, et al. Behavioral analysis of unilateral monoamine depletion in the marmoset. Brain 1992; 115:825-856.

33. Nass R, Hall DH, Miller DM, et al. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci USA 2002; 99(5):3264-3269.

34. Nass R, Hahn MK, Jessen T, et al. A genetic screen in Caenorhabditis elegans for dopamine neuron insensitivity to 6-hydroxydopamine identifies dopamine transporter mutants impacting transporter biosynthesis and trafficking. J Neurochem 2005; 94(3): 774-785.

35. Davis GC, Williams AC, Markey SP, et al. Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psych Res 1979; 1:249-254.

36. Langston JW, Ballard P, Tetrud JW, et al. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219:979-980.

37. Muthane U, Ramsay KA, Jiang H, et al. Differences in nigral neuron number and sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium in C57/bl and CD-1 mice. Exp Neurol 1994; 126:195-204.

38. Hamre K, Tharp R, Poon K, et al. Differential strain susceptibility following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration acts in an autosomal dominant fashion: quantitative analysis in seven strains of Mus musculus. Brain Res 1999; 828(1-2):91-103.

39. Heikkila RE. Differential neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Swiss-Webster mice from different sources. Eur J Pharmacol 1985; 117(1):131-133.

40. Jarvis MF, Wagner GC. Age-dependent effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuropharm 1985; 24(6):581-583.

41. Ali S, David S, Newpor G, et al. MPTP-induced oxidative stress and neurotoxicity are age-dependent: evidence from measures of reactive oxygen species and striatal dopamine levels. Synapse 1994; 18:27-34.

42. Saura J, Richards J, Mahy N. Age-related changes on MAO in Bl/C57 mouse tissues: a quantitative radioautographic study. J Neural Transm 1994; 41(suppl):89-94.

43. Yazdani U, German DC, Liang CL, et al. Rat model of Parkinson's disease: chronic central delivery of 1-methyl-4-phenylpyridinium (MPP(+)). Exp Neurol 2006; 4(3):257-269.

44. Jackson-Lewis V, Jakowec M, Burke RE, et al. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegen 1995; 4(3):257-269.

45. Ricaurte GA, Langston JW, DeLanney LE, et al. Fate of nigrostriatal neurons in young mature mice given 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: a neurochemical and morphological reassessment. Brain Res 1986; 376:117-124.

Kalivas PW, Duffy P, Barrow J. Regulation of the mesocortocolimbic dopamine system by glutamic acid receptor subtypes. J Pharmacol Exp Therap 1989; 251(1):378-387. Bezard E, Dovero S, Imbert C, et al. Spontaneous long-term compensatory dopaminergic sprouting in MPTP-treated mice. Synapse 2000; 38(3):363-368. Forno LS, Langston JW, DeLanney LE, et al. Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 1986; 20:449-455. Langston JW, Forno LS, Tetrud J, et al. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 1999; 46(4):598-605.

Przedborski S, Jackson-Lewis V, Naini AB, et al. The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 2001; 76(5):1265-1274.

Royland JE, Langston JW. MPTP: a dopamine neurotoxin. In: Kostrzewa R.M., ed.

Highly Selective Neurotoxins. Totawa, NJ: Humana Press, 1998:141-194.

Sedelis M, Schwarting RK, Huston JP. Behavioral phenotyping of the MPTP mouse model of Parkinson's disease. Behav Brain Res 2001; 125(1-2):109-125.

Tanila H, Bjorklund M, Riekkinen P, Jr. Cognitive changes in mice following moderate

MPTP exposure. Brain Res Bull 1998; 45(6):577-582.

Sedelis M, Hofele K, Auburger GW, et al. MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behav Genet 2000; 30(3):171-182.

Tillerson JL, Miller GW. Grid performance test to measure behavioral impairment in the MPTP-treated-mouse model of parkinsonism. J Neurosci Meth 2003; 123:189-200. Kurosaki R, Muramatsu Y, Kato H, et al. Biochemical, behavioral and immunohisto-chemical alterations in MPTP-treated mouse model of Parkinson's disease. Pharmacol Biochem Behav 2004; 78(1):143-153.

Rousselet F, Joubert C, Callebert J, et al. Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice. Neurobiol Dis 2003; 14(2):218-228.

Tillerson JL, Caudle WM, Reveron ME, et al. Detection of behavioral impairments correlated to neurochemical deficits in mice treated with moderate doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Exp Neurol 2002; 178(1):80-90.

Jakowec MW, Nixon K, Hogg L, et al. Tyrosine hydroxylase and dopamine transporter expression following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration in the mouse nigrostriatal pathway. J Neurosci Res 2004; 76(2):539-550. Ho A, Blum M. Induction of interleukin-1 associated with compensatory dopaminergic sprouting in the denervated striatum of young mice: model of aging and neurodegen-erative disease. J Neurosci 1998; 18(15):5614-5629.

Tillerson JL, Caudle WM, Reveron ME, et al. Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience 2003; 119(3):899-911.

Fisher B, Petzinger GM, Nixon K, et al. Exercised induced behavioral recovery and neu-roplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. J Neurosci Res 2004; 77:378-390.

Taylor JR, Elsworth JD, Roth RH, et al. Severe long-term 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the vervet monkey (Cercopithecus aethiops sabaeus). Neurosci 1997; 81(3):745-755.

Petzinger GM, Langston JW. The MPTP-lesioned non-human primate: a model for Parkinson' s disease. In: Marwah J, Teitelbbaum H, eds. Advances in Neurodegenera-tive Disease. Vol I: Parkinson's Disease. Scottsdale, AZ: Prominent Press, 1998:113-148. Rose S, Nomoto M, Jackson EA, et al. Age-related effects of 1-methyl-4-phenyl-,2,3,6-tetrahydropyridine treatment of common marmosets. Eur J Pharm 1993; 230:177-185. Gerlach M, Reiderer P. Animal models of Parkinson's disease: an empiracal comparison with the phenomenology of the disease in man. J Neural Transm 1996; 103:987-1041. Ovadia A, Zhang Z, Gash DM. Increased susceptibility to MPTP toxicity in middle-aged rhesus monkeys. Neurobiol Aging 1995; 16(6):931-937.

Petzinger GM, Fisher BE, Hogg E, et al. Behavioral recovery in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-lesioned squirrel monkey (Saimiri sciureus): Analy sis of striatal dopamine and the expression of tyrosine hydroxylase and dopamine transporter proteins. J Neuorsci Res 2005; 83(2):332-347.

69. Bezard E, Gross C. Compensatory mechanisms in experimental and human parkinsonism: towards a dynamic approach. Prog Neurobiol 1998; 55:96-116.

70. Tetrud JW, Langston JW. MPTP-induced parkinsonism as a model for Parkinson's disease. Acta Neurol Scand 1989; 126:35-40.

71. Elsworth JD, Deutch AY, Redmond DE, et al. MPTP-induced parkinsonism: relative changes in dopamine concentration in subregions of substantia nigra, ventral tegmental area and retrorubal field of symptomatic and asymptomatic vervet monkeys. Brain Res 1990; 513(2):320-324.

72. Waters CM, Hunt SP, Jenner P, et al. An immunohistochemical study of the acute and long-term effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the marmoset. Neurosci 1987; 23(3):1025-1039.

73. Eidelberg E, Brooks BA, Morgan WW, et al. Variability and functional recovery in the N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of parkinsonism in monkeys. Neurosci 1986; 18(4):817-822.

74. Bankiewicz KS, Oldfield EH, Chiueh CC, et al. Hemiparkinsonism in monkeys after unilateral internal carotid infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Life Sci 1986; 39:7-16.

75. Smith R, Zhang Z, Kurlan R, et al. Developing a stable bilateral model of parkinsonism in rhesus monkeys. Neurosci 1993; 52(1):7-16.

76. Eberling JL, Jagust W, Taylor S, et al. A novel MPTP primate model of Parkinson's disease: neurochemical and clinical changes. Brain Res 1998; 805(1-2):259-262.

77. Bezard E, Imbert C, Deloire X, et al. A chronic MPTP model reproducing the slow evolution of Parkinson's disease: evolution of motor symptoms in the monkey. Brain Res 1997; 766(1-2):107-112.

78. Bezard E, Brotchie JM, Gross CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci 2001; 2(8):577-588.

79. Hurley MJ, Mash DC, Jenner P. Dopamine D1 receptor expression in human basal ganglia and changes in Parkinson's disease. Brain Res Mol Brain Res 2001; 87(2):271-279.

80. Papa SM, Chase TN. Levodopa-induced dyskinesias improved by a glutamate antagonist in parkinsonian monkeys. Ann Neurol 1996; 39:574-578.

81. Bedard PJ, Mancilla BG, Blanchette P, et al. Levodopa-induced dyskinesia: facts and fancy. What does the MPTP monkey model tell us? Can J Neurol Sci 1992; 19:134-137.

82. Calon F, Morissette M, Ghribi O, et al. Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26(1): 127-138.

83. Pearce RK, Heikkila M, Linden IB, et al. L-Dopa induces dyskinesia in normal monkeys: behavioural and pharmacokinetic observations. Psychopharm (Berl) 2001; 156(4):402-409.

84. McKinley ET, Baranowski TC, Blavo DO, et al. Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Brain Res Mol Brain Res 2005; 141(2):128-137.

85. Ricaurte GA, Schuster CR, Seiden LS. Long-term effects of repeated methylampheta-mine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res 1980; 193:153-163.

86. Ricaurte GA, Guillery RW, Seiden LS, et al. Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res 1982; 235(1): 93-103.

87. Kim BG, Shin DH, Jeon GS, et al. Relative sparing of calretinin containing neurons in the substantia nigra of 6-OHDA treated rat Parkinsonian model. Brain Res 2000; 855(1): 162-165.

88. Sonsalla PK, Jochnowitz ND, Zeevalk GD, et al. Treatment of mice with methampheta-mine produces cell loss in the substantia nigra. Brain Res 1996; 738(1):172-175.

89. Harvey DC, Lacan G, Melega WP. Regional heterogeneity of dopaminerigc deficits in vervet monkey striatum and substantia nigra after methamphetamine exposure. Exp Brain Res 2000; 133:349-358.

90. Walsh SL, Wagner GC. Motor impairments after methamphetamine-induced neurotox-icity in the rat. J Pharmacol Exp Ther 1992; 263(2):617-626.

Westphale RI, Stadlin A. Dopamine uptake blockers nullify methamphetamine-induced decrease in dopamine uptake and plasma membrane potential in rat striatal synapto-somes. Ann NY Acad Sci 2000; 914:187-193.

Fumagalli F, Gainetdinov RR, Valenzano KJ, et al. Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. J Neurosci 1998; 18(13):4861-4869.

Cubells JF, Rayport S, Rajendran G, et al. Methamphetamine neurotoxicity involves vac-uolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci 1994; 14(4):2260-2271.

Gluck MR, Moy LY, Jayatilleke E, et al. Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment. J Neu-rochem 2001; 79(1):152-160.

Yamamoto BK, Zhu W. The effects of methamphetamine on the production of free radicals and oxidative stress. J Pharmacol Exp Ther 1998; 287(1):107-114. Imam SZ, el-Yazal J, Newport GD, et al. Methamphetamine-induced dopaminergic neu-rotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxyni-trite decomposition catalysts. Annals NY Acad Sci 2001; 939:366-380. Davidson C, Gow AJ, Lee MK, et al. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Brain Res Rev 2001; 36(1):1-22.

Cadet JL, Ladenheim B, Baum I, et al. CuZn-superoxide dismutase (CuZnSOD) trans-genic mice show resistance to the lethal effects of methylenedioxyamphetamine (MDA) and of methylenedioxymethamphetamine (MDMA). Brain Res 1994; 655:259-262. Hirata H, Ladenheim B, Carlson E, et al. Autoradiographic evidence for methamphetamine-induced striatal dopaminergic loss in mouse brain: attenuation in CuZn-superoxide dismutase transgenic mice. Brain Res 1996; 714(1-2):95-103. Sonsalla PK, Riordan DE, Heikkila RE. Competitive and noncompetitive antagonists at N-methyl-D-asparate receptors protect against methamphetamine-induced dopaminer-gic damage in mice. J Pharmacol Exp Therap 1991; 256(2):506-512. Frost DO, Cadet JL. Effects of methamphetamine-induced neurotoxicity on the development of neural circuitry: a hypothesis. Brain Res Brain Res Rev 2000; 34(3):103-118. McCann UD, Wong DF, Yokoi F, et al. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 1998; 18(20):8417-8422. Paulus MP, Hozack NE, Zauscher BE, et al. Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsy-chopharm 2002; 26(1):53-65.

Guilarte TR. Is methamphetamine abuse a risk factor in parkinsonism? Neurotoxicol 2001; 22(6):725-731.

Tanner CM, Ottman R, Goldman SM, et al. Parkinson disease in twins: an etiologic study. J Am Med Assoc 1999; 281(4):341-346.

Betarbet R, Sherer TB, MacKenzie G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 2000; 3(12):1301-1306. Sherer TB, Kim JH, Betarbet R, et al. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 2003; 179(1):6-18.

Hoglinger GU, Feger J, Prigent A, et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 2003; 84(3):491-502. Huang J, Liu H, Gu W, et al. A delivery strategy for rotenone microspheres in an animal model of Parkinson's disease. Biomaterials 2006; 27(6):937-946.

Sherer TB, Betarbet R, Testa CM, et al. Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci 2003; 23(34):10,756-10,764.

Testa CM, Sherer TB, Greenamyre JT. Rotenone induces oxidative stress and dopamin-ergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res 2005; 134(1):109-118.

Greenamyre JT, Betarbet R, Sherer TB. The rotenone model of Parkinson's disease: genes, environment and mitochondria. Parkinsonism Relat Disord 2003; 9(suppl 2):S59-S64.

113. Panov A, Dikalov S, Shalbueva N, et al. Rotenone model of Parkinson's disease: multiple brain mitochondria dysfunctions after short-term systemic rotenone intoxication. J Biol Chem 2005; 280(51):42,026-42,035.

114. Fleming SM, Zhu C, Fernagut PO, et al. Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol 2004; 187(2):418-429.

115. Thiruchelvam M, Richfield EK, Baggs RB, et al. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson's disease. J Neurosci 2000; 20(24):9207-9214.

116. McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 2002; 10(2):119-127.

117. Uversky VN. Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res 2004; 318(1):225-241.

118. Richardson JR, Quan Y, Sherer TB, et al. Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol Sci 2005; 88(1):193-201.

119. Tawara T, Fukushima T, Hojo N, et al. Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Arch Toxicol 1996; 70(9):585-589.

120. Fukushima T, Yamada K, Hojo N, et al. Mechanism of cytotoxicity of paraquat. III. The effects of acute paraquat exposure on the electron transport system in rat mitochondria. Exp Toxicol Pathol 1994; 46(6):437-441.

121. Grant H, Lantos PL, Parkinson C. Cerebral damage in paraquat poisoning. Histopathol-ogy 1980; 4(2):185-195.

122. Hughes JT. Brain damage due to paraquat poisoning: a fatal case with neuropathologi-cal examination of the brain. Neurotox 1988; 9(2):243-248.

123. Ossowska K, Wardas J, Smialowska M, et al. A slowly developing dysfunction of dopaminergic nigrostriatal neurons induced by long-term paraquat administration in rats: an animal model of preclinical stages of Parkinson's disease? Eur J Neurosci 2005; 22(6):1294-1304.

124. Brooks AI, Chadwick CA, Gelbard HA, et al. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 1999; 823(1-2):1-10.

125. Betarbet R, Sherer TB, Greenamyre JT. Ubiquitin-proteasome system and Parkinson's disease. Exp Neurol 2005; 191(suppl 1):S17-S27.

126. Ross CA, Pickart CM. The ubiquitin-proteasome pathway in Parkinson's disease and other neurodegenerative diseases. Trends Cell Biol 2004; 14(12):703-711.

127. Tanaka K, Suzuki T, Hattori N, et al. Ubiquitin, proteasome and parkin. Biochim Bio-phys Acta 2004; 1695(1-3):235-247.

128. Petrucelli L, Dawson TM. Mechanism of neurodegenerative disease: role of the ubiqui-tin proteasome system. Ann Med 2004; 36(4):315-320.

129. McNaught KS, Belizaire R, Isacson O, et al. Altered proteasomal function in sporadic Parkinson's disease. Exp Neurol 2003; 179(1):38-46.

130. Healy DG, Abou-Sleiman PM, Wood NW. Genetic causes of Parkinson's disease: UCHL-1. Cell Tissue Res 2004; 318(1):189-194.

131. McNaught KS, Perl DP, Brownell AL, et al. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease. Ann Neurol 2004; 56(1):149-162.

132. Fornai F, Lenzi P, Gesi M, et al. Fine structure and biochemical mechanisms underlying nigrostriatal inclusions and cell death after proteasome inhibition. J Neurosci 2003; 23(26):8955-8966.

133. Heintz N, Zoghbi HY. Insights from mouse models into the molecular basis of neurodegeneration. Ann Rev Physiol 2000; 62:779-802.

134. Payne AP, Campbell JM, Russell D, et al. The AS/AGU rat: a spontaneous model of disruption and degeneration in the nigrostriatal dopaminergic system. J Anat 2000; 196(Pt 4):629-633.

135. Al-Fayez M, Russell D, Wayne Davies R, et al. Deficits in the mid-brain raphe nuclei and striatum of the AS/AGU rat, a protein kinase C-gamma mutant. Eur J Neurosci 2005; 22(11):2792-2798.

Craig NJ, Duran Alonso MB, Hawker KL, et al. A candidate gene for human neurodegenerative disorders: a rat PKC gamma mutation causes a Parkinsonian syndrome. Nat Neurosci 2001; 4(11):1061-1062.

Richter A, Ebert U, Nobrega JN, et al. Immunohistochemical and neurochemical studies on nigral and striatal functions in the circling (ci) rat, a genetic animal model with spontaneous rotational behavior. Neurosci 1999:89(2):461-471.

Nunes I, Tovmasian LT, Silva RM, et al. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 2003; 100(7):4245-4250. van den Munckhof P, Gilbert F, Chamberland M, et al. Striatal neuroadaptation and rescue of locomotor deficit by L-dopa in aphakia mice, a model of Parkinson's disease. J Neurochem 2006; 96(1):160-170.

Smidt MP, Smits SM, Burbach JP. Molecular mechanisms underlying midbrain dopamine neuron development and function. Eur J Pharmacol 2003; 480(1-3):75-88. Polymeropoulos M, Lavendan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997; 276(5321):2045-2047. Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding a-synuclein in parkinson's disease. Nat Gen 1998; 18:106-108.

Singleton AB, Farrer M, Johnson J, et al. Alpha-synuclein locus triplication causes Parkinson's disease. Science 2003; 302(5646):841.

George JM, Jin H, Woods WS, et al. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 1995; 15:361-372. Jakowec MW, Donaldson DM, Barba J, et al. The postnatal expression of a-synuclein in the substantia nigra and striatum of the rodent. Dev Neurosci 2001; 23(2):91-99. Lykkebo S, Jensen PH. Alpha-synuclein and presynaptic function: implications for Parkinson's disease. Neuromolecular Med 2002; 2(2):115-129.

Fornai F, Soldani P, Lazzeri G, et al. Neuronal inclusions in degenerative disorders. Do they represent static features or a key to understand the dynamics of the disease? Brain Res Bull 2005; 65(4):275-290.

Lundvig D, Lindersson E, Jensen PH. Pathogenic effects of alpha-synuclein aggregation. Brain Res Mol Brain Res 2005; 134(1):3-17.

Abeliovich A, Schmitz Y, Farinas I, et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000; 25(1):239-252. Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 2000; 289(5456):1265-1269.

van der Putten H, Wiederhold KH, Probst A, et al. Neuropathology in mice expressing human alpha -synuclein. J Neurosci 2000; 20(16):6021-6029.

Kahle PJ, Neumann M, Ozmen L, et al, Physiology and pathophysiology of alpha-synuclein. Cell culture and transgenic animal models based on a Parkinson's disease-associated protein. Ann NY Acad Sci 2000; 920:33-41.

Richfield EK, Thiruchelvam MJ, Cory-Slechta DA, et al. Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol 2002; 175(1):35-48.

Gispert S, Del Turco D, Garrett L, et al. Transgenic mice expressing mutant A53T human alpha-synuclein show neuronal dysfunction in the absence of aggregate formation. Mol Cell Neurosci 2003; 24(2):419-429.

Giasson BI, Duda JE, Quinn SM, et al. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 2002; 34(4):521-533.

Shults CW, Rockenstein E, Crews L, et al. Neurological and neurodegenerative alterations in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J Neurosci 2005; 25(46):10,689-10,699. Unger EL, Eve DJ, Perez XA, et al. Locomotor hyperactivity and alterations in dopamine neurotransmission are associated with overexpression of A53T mutant human alpha-synuclein in mice. Neurobiol Dis 2005; 21(2):431-443.

Lee MK, Stirling W, Xu Y, et al. Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53-> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA2002; 99(13):8968-8973.

159. Gomez-Isla T, Irizarry MC, Mariash A, et al. Motor dysfunction and gliosis with preserved dopaminergic markers in human alpha-synuclein A30P transgenic mice. Neuro-biol Aging 2003; 24(2):245-258.

160. Yavich L, Oksman M, Tanila H, et al. Locomotor activity and evoked dopamine release are reduced in mice overexpressing A30P-mutated human alpha-synuclein. Neurobiol Dis 2005; 20(2):303-313.

161. Matsuoka Y, Vila M, Lincoln S, et al. Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol Dis 2001; 8(3):535-539.

162. Martin LJ, Pan Y, Price AC, et al. Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 2006; 26(1):41-50.

163. Yazawa I, Giasson BI, Sasaki R, et al. Mouse model of multiple system atrophy alpha-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron 2005; 45(6):847-859.

164. Shimura H, Schlossmacher MG, Hattori N, et al. Ubiquitination of a new form of {alpha}-synuclein by parkin from human brain: Implications for Parkinson's disease. Science 2001; 293:263-269.

165. Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392:605-608.

166. Hattori N, Kitada T, Matsumine H, et al. Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: evidence for variable homozygous deletions in the Parkin gene in affected individuals. Ann Neurol 1998; 44(6):935-941.

167. Fallon L, Moreau F, Croft BG, et al. Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain. J Biol Chem 2002; 277(1):486-491.

168. Huynh DP, Dy M, Nguyen D, et al. Differential expression and tissue distribution of parkin isoforms during mouse development. Brain Res Dev Brain Res 2001; 130(2): 173-181.

169. Solano SM, Miller DW, Augood S, et al. Expression of alpha-synuclein, parkin, and ubiq-uitin carboxy-terminal hydrolase L1 mRNA in human brain: genes associated with familial Parkinson's disease. Ann Neurol 2000; 47(2):201-210.

170. Tanaka K, Suzuki T, Chiba T, et al. Parkin is linked to the ubiquitin pathway. J Mol Med 2001; 79(9):482-494.

171. Goldberg MS, Fleming SM, Palacino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 2003; 278(44):43,628-43,635.

172. Bonifati V, Rizzu P, Squitieri F, et al. DJ-1( PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci 2003; 24(3):159-160.

173. Goldberg MS, Pisani A, Haburcak M, et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 2005; 45(4):489-496.

174. Junn E, Taniguchi H, Jeong BS, et al. Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc Natl Acad Sci USA 2005; 102(27):9691-9696.

175. Martinat C, Shendelman S, Jonason A, et al. Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES- derived cell model of primary Parkinsonism. PLoS Biol 2004; 2(11):e327.

176. Shendelman S, Jonason A, Martinat C, et al. DJ-1 is a redox-dependent molecular chap-erone that inhibits alpha-synuclein aggregate formation. PLoS Biol 2004; 2(11):e362.

177. Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson's disease. Nature 1998; 395(6701):451-452.

178. Kwon J, Wang YL, Setsuie R, et al. Developmental regulation of ubiquitin C-terminal hydrolase isozyme expression during spermatogenesis in mice. Biol Reprod 2004; 71(2):515-521.

179. Wang YL, Liu W, Sun YJ, et al. Overexpression of ubiquitin carboxyl-terminal hydrolase L1 arrests spermatogenesis in transgenic mice. Mol Reprod Dev 2006; 73(1):40-49.

180. Wang YL, Takeda A, Osaka H, et al. Accumulation of beta- and gamma-synucleins in the ubiquitin carboxyl-terminal hydrolase L1-deficient gad mouse. Brain Res 2004; 1019(1-2):1-9.

Paisan-Ruiz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 2004; 44(4):595-600. Mata IF, Kachergus JM, Taylor JP, et al. Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics 2005; 6(4):171-177.

Skipper L, Shen H, Chua E, et al. Analysis of LRRK2 functional domains in nondominant Parkinson disease. Neurology 2005; 65(8):1319-1321.

Ozelius LJ, Senthil G, Saunders-Pullman R, et al. LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N Engl J Med 2006; 354(4):424-425. West AB, Moore DJ, Biskup S, et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 2005; 102(46): 16,842-16,847.

Smith WW, Pei Z, Jiang H, et al. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci USA 2005; 102(51):18,676-18,681.

Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004; 304(5674):1158-1160. Shen J, Cookson MR. Mitochondria and dopamine: new insights into recessive parkinsonism. Neuron 2004; 43(3):301-304.

Petit A, Kawarai T, Paitel E, et al. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 2005; 280(40):34,025-34,032.

Law SW, Conneely OM, DeMayo FJ, et al. Identification of a new brain-specific transcription factor, NURR1. Molec Endocrin 1992; 6(12):2129-2135.

Zetterstrom RH, Solomin L, Jansson L, et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 1997; 276(5310):248-250.

Chu Y, Le W, Kompoliti K, et al. Nurr1 in Parkinson's disease and related disorders. J Comp Neurol 2006; 494(3):495-514.

Tornqvist N, Hermanson E, Perlmann T, et al. Generation of tyrosine hydroxylase-immunoreactive neurons in ventral mesencephalic tissue of Nurr1 deficient mice. Brain Res Dev Brain Res 2002; 133(1):37-47.

Jankovic J, Chen S, Le WD. The role of Nurr1 in the development of dopaminergic neurons and Parkinson's disease. Prog Neurobiol 2005; 77(1-2):128-138. Eells JB. The control of dopamine neuron development, function and survival: insights from transgenic mice and the relevance to human disease. Curr Med Chem 2003; 10(10):857-870.

Eells JB, Lipska BK, Yeung SK, et al. Nurr1-null heterozygous mice have reduced mesolimbic and mesocortical dopamine levels and increased stress-induced locomotor activity. Behav Brain Res 2002; 136(1):267-275.

Witta J, Baffi JS, Palkovits M, et al. Nigrostriatal innervation is preserved in Nurr1-null mice, although dopaminergic neuron precursors are arrested from terminal differentiation. Brain Res Mol Brain Res 2000; 84(1-2):67-78.

Klein RL, Dayton RD, Lin WL, et al. Tau gene transfer, but not alpha-synuclein, induces both progressive dopamine neuron degeneration and rotational behavior in the rat. Neurobiol Dis 2005; 20(1):64-73.

Kirik D, Georgievska B, Bjorklund A. Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci 2004; 7(2):105-110.

Kirik D, Annett LE, Burger C, et al. Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of

Parkinson's disease. Proc Natl Acad Sci USA 2003; 100(5):2884-2889.

Klein RL, King MA, Hamby ME, et al. Dopaminergic cell loss induced by human A30P

alpha-synuclein gene transfer to the rat substantia nigra. Hum Gene Ther 2002; 13(5):

605-612.

Bankiewicz KS, Eberling JL, Kohutnicka M, et al. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 2000; 164(1):2-14. Azzouz M, Martin-Rendon E, Barber RD, et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease. J Neurosci 2002; 22(23):10,302-10,312.

204. Bjorklund A, Kirik D, Rosenblad C, et al. Towards a neuroprotective gene therapy for Parkinson's disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 2000; 886(1-2): 82-98.

205. Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 2000; 290(5492):767-773.

206. Torres EM, Monville C, Lowenstein PR, et al. Delivery of sonic hedgehog or glial derived neurotrophic factor to dopamine-rich grafts in a rat model of Parkinson's disease using adenoviral vectors increased yield of dopamine cells is dependent on embryonic donor age. Brain Res Bull 2005; 68(1-2):31-41.

207. During MJ, Kaplitt MG, Stern MB, et al. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum Gene Ther 2001; 12(12):1589-1591.

208. Bilen J, Bonini NM. Drosophia as a model for human neurodegenerative disease. Ann Rev Genet 2005; 39:153-171.

209. Coulom H, Birman S. Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster. J Neurosci 2004; 24(48):10,993-10,998.

210. Feany MB, Bender WW. A Drosophila model of Parkinson's disease. Nature 2000; 404(6776):394-398.

211. Pendleton RG, Parvez F, Sayed M, et al. Effects of pharmacological agents upon a transgenic model of Parkinson's disease in Drosophila melanogaster. J Pharmacol Exp Ther 2002; 300(1):91-96.

212. Auluck PK, Chan HY, Trojanowski JQ, et al. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 2002; 295(5556):865-868.

213. Pesah Y, Burgess H, Middlebrooks B, et al. Whole-mount analysis reveals normal numbers of dopaminergic neurons following misexpression of alpha-synuclein in Drosophila. Genesis 2005; 41(4):154-159.

214. Greene JC, Whitworth AJ, Kuo I, et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 2003; 100(7): 4078-4083.

215. Pesah Y, Pham T, Burgess H, et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 2004; 131(9):2183-2194.

216. Park J, Kim SY, Cha GH, et al. Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 2005; 361:133-139.

217. Menzies FM, Yenisetti SC, Min KT. Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol 2005; 15(17):1578-1582.

218. Meulener M, Whitworth AJ, Armstrong-Gold CE, et al. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol 2006; 15(17):1572-1577.

219. Moore DJ, Dawson VL, Dawson TM. Lessons from Drosophila models of DJ-1 deficiency. Sci Aging Knowledge Environ 2006; 2006(2):pe2.

220. Ghorayeb I, Puschban Z, Fernagut PO, et al. Simultaneous intrastriatal 6-hydroxydopamine and quinolinic acid injection: a model of early-stage striatonigral degeneration. Exp Neurol 2001; 167(1):133-147.

221. Wenning GK, Granata R, Puschban Z, et al. Neural transplantation in animal models of multiple system atrophy: a review. J Neural Transm Suppl 1999; 55:103-113.

222. Scherfler C, Puschban Z, Ghorayeb I, et al. Complex motor disturbances in a sequential double lesion rat model of striatonigral degeneration (multiple system atrophy). Neu-rosci 2000; 99(1):42-54.

223. Ghorayeb I, Fernagut PO, Aubert I, et al. Toward a primate model of L-dopa-unresponsive parkinsonism mimicking striatonigral degeneration. Mov Disord 2000; 15(3):531-536.

224. Neumann M, Muller V, Gorner K, et al. Pathological properties of the Parkinson's disease-associated protein DJ-1 in alpha-synucleinopathies and tauopathies: relevance for multiple system atrophy and Pick's disease. Acta Neuropathol (Berl) 2004; 107(6): 489-496.

225. Barbieri S, Hofele K, Wiederhold KH, et al. Mouse models of alpha-synucleinopathy and Lewy pathology. Alpha-synuclein expression in transgenic mice. Adv Exp Med Biol 2001; 487:147-167.

226. Ishihara T, Hong M, Zhang B, et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 1999; 24(3):751-762.

227. Wittmann CW, Wszolek MF, Shulman JM, et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 2001; 293(5530):711-714.

Was this article helpful?

0 0
An Addict's Guide To Freedom

An Addict's Guide To Freedom

Get All The Support And Guidance You Need To Be A Success At Understanding And Getting Rid Of Addictions. This Book Is One Of The Most Valuable Resources In The World When It Comes To New Ways To Understand Addicts And Get Rid Of Addictions.

Get My Free Ebook


Post a comment