The Parkinson's-Reversing Breakthrough

Parkinson Disease Causes

Get Instant Access

1. Goetz CG, DeLong MR, Penn RD, Bakay RA. Neurosurgical horizons in Parkinson's disease. Neurology 1993; 43:1-7.

2. During MJ, Kaplitt MG, Stern MB, Eidelberg D. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum Gene Ther 2001; 12:1589-1591.

3. Montgomery E. Point of view: basal ganglia physiology and pathophysiology. Parkinsonism Relat Disord. In press.

4. The Deep Brain Stimulation For Parkinson's Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N Engl J Med 2001; 345:956-963.

5. Olanow CW, Goetz CG, Kordower JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol 2003; 54:403-414.

6. Hagell P, Piccini P, Bjorklund A, et al. Dyskinesias following neural transplantation in Parkinson's disease. Nat Neurosci 2002; 5:627-628.

7. Montgomery EB. Dynamically coupled, high-frequency reentrant, non-linear oscillators embedded in scale-free basal ganglia-thalamic-cortical networks mediating function and deep brain stimulation effects. Nonlinear Studies 2004; 11:385-421.

8. Parent A, Hazarati LN. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 1995; 20:91-127.

9. Parent A, Hazarati LN. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 1995; 20:127-154.

10. Bolam JP, Hanley JJ, Booth PAC, Bevan MD. Synaptic organization of the basal ganglia. J Anat 2000; 196:527-542.

11. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neu-roanat 2003; 26:317-330.

12. Parent A, Sato F, Wu Y, Gauthier J, Levesque M, Parent M. Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci 2000; 23:S20-S27.

13. Salinas E, Opris I, Zainos A, Hernandex A, Romo R. Motor and non-motor roles of the cortico-basal ganglia circuitry. In: Miller R, Wickens JR, eds. Brain Dynamics and the Stri-atal Complex. Amsterdam: Harwood Academic Amsterdam, 2000: 237-255.

14. Smith Y, Shink E, Sidibé M. Neuronal circuitry and synaptic connectivity of the basal ganglia. Neurosurg Clin N Am 1998; 9:203-222.

15. Nandi D, Aziz TZ, Liu X, Stein JF. Brainstem motor loops in the control of movement. Mov Disord 2002; 17:S22-S27.

16. Mazzone P, Lozano A, Stanzione P, et al. Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson's disease. Neuroreport 2005; 16:1875-1876.

17. Albin RL, Young A, Penny JB. The functions anatomy of basal ganglia disorders. Trends Neurosci 1989; 12:366-375.

18. DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990; 13:281-285.

19. Nambu A, Yoshida S, Jinnai K. Discharge patterns of pallidal neurons with input from various cortical areas during movement in the monkey. Brain Res 1990; 519:183-191.

20. McFarland NR, Haber SN. Organization of thalamostriatal terminals from the ventral motor nuclei in the macaque. J Comp Neurol 2001; 429:321-336.

21. Wichmann T, Bergman H, DeLong MR. The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 1994; 72:521-530.

22. Montgomery EB, Buchholz SR, Delitto A, Collins RC. Alterations in basal ganglia physiology following MPTP in monkeys. In: Markey SP, Castagnoli AJ, Jr., Trevar AJ, Kopin IJ, eds. MPTP: A Neurotoxin Producing a Parkinsonian Syndrome. Orlando: Academic Press, 1986: 679-682.

23. Filion M, Tremblay L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 1991; 547:142-151.

24. Filion M. Effects of interruption of the nigrostriatal pathway and of dopamine agents on the spontaneous activity of globus pallidus neurons in the awake monkey. Brain Res 1979; 178:425-441.

25. Percheron G, Filion M, Tremblay L, Fenelon G, Francois C, Yelnik J. The role of the medial pallidum in the pathophysiology of akinesia in primates. Adv Neurol 1993; 60:84-87.

26. Montgomery EB. Subthalamic neuronal activity in Parkinson's disease and epilepsy subjects. Parkinsonism Relat Disord. In press.

27. Tang JK, Moro E, Lozano AM, et al. Firing rates of pallidal neurons are similar in Huntington's and Parkinson's disease patients. Exp Brain Res 2005; 166(2):230-236.

28. Hutchison WD, Lang AE, Dostrovsky JO, Lozano AM. Pallidal neuronal activity: implications for models of dystonia. Ann Neurol 2003; 53(4):480-488.

29. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek Jl. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 2003; 23:1916-1923.

30. Anderson ME, Postupna N, Ruffo M. Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neuro-physiol 2003; 89:1150-1160.

31. Montgomery EB. Effects of globus pallidus interna stimulation on human thalamic neuronal activity. Clin Neurophysiol 2006; 117:2691-2712.

32. Obeso JA, Rodriguez-Oroz MC, Rodriguez M, et al. The physiology of the basal ganglia in Parkinson's disease. Trends Neurosci 2000; 23(suppl):S8-S19.

33. Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 1996; 50:381-425.

34. Sanchez-Pernaute R, Kunig G, del Barrio A, de Yebenes JG, Vontobel P, Leenders KL. Bradykinesia in early Huntington's disease. Neurology 2000; 54:119-125.

35. Chandler WF, Crosby EC. Motor effects of stimulation and ablation of the caudate nucleus of the monkey. Neurology 1975; 25:1160-1163.

36. Cools A. Chemical and electrical stimulation of the caudate nucleus in freely moving cats; the role of dopamine. Brain Res 1973; 58:437-451.

37. Forman D, Ward JW. Responses to electrical stimulation of caudate nucleus in cats in chronic experiments. J Neurophysiol 1957; 20:230-244.

38. Hassler R, Dieckmann G. Arrest reaction, delayed inhibition and unusual gaze behavior resulting from stimulation of the putamen in awake, unrestrained cats. Brain Res 1967; 5:504-508.

39. Montgomery EB, Clare MH, Sahrman S, Buchholz SR, Hibbard LS, Landau WM. Neuronal multipotentiality: Evidence for network representation of physiological function. Brain Res 1992; 580:49-61.

40. Tolkunov BF, Orlov AA, Afanasev, SV, Selezneva, EV. Involvement of striatum (putamen) neurons in motor and nonmotor behavior fragments in monkeys. Neurosci Behav Phys-iol 1998; 28:224-230.

41. Montgomery EB, Gorman DS, Nuessen J. Motor initiation versus execution in normal and Parkinson's disease subjects. Neurology 1991; 41:1469-1475.

42. MacMillan ML, Dostrovsky JO, Lozano AM, Hutchison WD. Involvement of human thal-amic neurons in internally and externally generated movements. J Neurophysiol 2004; 91:1085-1090.

43. Jaeger D, Gilman S, Aldridge JW. Neuronal activity in the striatum and pallidum of primates related to the execution of externally cued reaching movements. Brain Res 1995; 694:111-127.

44. Mink JW, Thach WT. Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. J Neurophysiol 1991; 65:301-329.

45. Grenier F, Timofeev I, Steriade M. Leading role of thalamic over cortical neurons during post-inhibitory rebound excitation. Proc Natl Acad Sci USA 1998; 95:13929-13934.

46. Luthi A, McCormick DA. H-current: properties of a neuronal and network pacemaker. Neuron 1998; 21:9-12.

47. Montgomery EB, Buchholz SR. The striatum and motor cortex in motor initiation and execution. Brain Res 1991; 549:222-229.

48. Bhatia KP, Marsden CD. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 1994; 117:859-876.

49. Klawans HL, Stein RW, Tanner CM, Goetz CG. A pure parkinsonian syndrome following acute carbon monoxide intoxication. Arch Neurol 1982; 39:302-304.

50. Wallays C, Feve A, Boudghene F, Fenelon G, Guillard A, Bigot JM. Hypoxic cerebral lesions. X-ray computed tomography and MRI aspects. Apropos of 20 cases. Selective vulnerability of the striatopallidum. J Neuroradiol 1995; 22:77-85.

51. Goto S, Matsumoto S, Ushio Y, Hirano A. Subregional loss of putaminal efferents to the basal ganglia output nuclei may cause parkinsonism in striatonigral degeneration. Neurology 1996; 47:1032-1036.

52. Friedman AK, Kang UJ, Tatemichi TK, Burke RE. A case of parkinsonism following striatal lacunar infarction. J Neurol Neurosurg Psychiatry 1986; 49:1087-1088.

53. Canavero S, Bonicalzi V, Paolotti R, et al. Therapeutic extradural cortical stimulation for movement disorders: a review. Neurol Res 2003; 25:118-122.

54. Koller W, Pahwa R, Busenbark K, et al. High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol 1997; 42:292-299.

55. Vitek JL, Hashimoto T, Peoples J, DeLong MR, Bakay AE. Acute stimulation in the external segment of the globus pallidus improves Parkinsonian motor signs. Mov Disord 2004; 19:907-915.

56. Montgomery EB, Baker KB. Mechanisms of deep brain stimulation and future technical developments. Neurol Res 2000; 22:259-266.

57. Montgomery EB, Baker KB. Deep brain stimulation. In: Horch KW and Dhillon G, eds. Neuroprosthetics: Theory and Practice (Series on Bioengineering and Biomedical Engineering Vol.2), Singapore: World Scientific Publishing Co., 2002: Chapter 6.5, 915-935.

58. Montgomery EB, Gale J, Baker KB. High frequency subthalamic nucleus stimulation. In: Luders HD, ed. Deep Brain Stimulation and Epilepsy, London. M Dunitz publisher, 2002:131-143.

59. Lozano AM, Eltahawy H. How does DBS work? Clin Neurophysiol London, New York 2004; 57:733-736.

60. McIntyre CC, Savasta M, Walter BL, Vitek JL. How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol 2004; 21:40-50.

61. Gale JT. Basis of Periodic Activities in the Basal Ganglia-Thalamic-Cortical System of the Rhesus Macaque. Kent: Kent State University, 2004.

62. Gale JT, Montgomery EB Jr, Huang H. Evidence of multi-stable high frequency oscillatory activity in the basal ganglia-thalamic-cortical system of the macaque. 2004 Abstract Viewer/Itnerary Planner 2004:Program no. 70.77.

63. Gale JT, Montgomery EB. Stimulation-induced resonance frequencies in the basal ganglia-thalamic-cortical (BG-Th-Ctx) network. 2003 Abstract Viewer/Itinerary Planner 2003:Program No. 390.318.

64. Timmermann L, Wojtecki L, Gross J, et al. Ten-Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson's disease. Mov Disord 2004; 19:1328-1333.

65. Montgomery EB, Effect of subthalamic nucleus stimulation patterns on motor performance in Parkinson's disease. Parkinsonism Relat Disord 2005; 11:167-171.

66. Hoppensteadt FC, Izhikevic EM. Weakly Connected Neural Networks. In: Marsden JE and Sirovich L, eds. Weakly Connected Neural Networks in Applied Mathematical Sciences Vol. 126, New York: Springer-Verlag, 1997.

67. Hoppensteadt FC, Izhikevich EM. Weakly Connected Neural Networks. New York: Springer-Verlag, 1997.

68. Barabasi AL, Bonabeau E. Scale-free networks. Sci Am 2003; 288:60-69.

69. Palsson B. The challenges of in silico biology. Nat Biotech 2000; 18:1147-1150.

Was this article helpful?

0 0
Brain Blaster

Brain Blaster

Have you ever been envious of people who seem to have no end of clever ideas, who are able to think quickly in any situation, or who seem to have flawless memories? Could it be that they're just born smarter or quicker than the rest of us? Or are there some secrets that they might know that we don't?

Get My Free Ebook

Post a comment