Acknowledgment

The Parkinson's-Reversing Breakthrough

Diets for Parkinsons

Get Instant Access

Supported by The Grace and Tom Benson Parkinson's disease research fund. REFERENCES

1. Bertoli-Avella AM, Oostra BA, Heutnik P. Chasing genes in Alzheimer's and Parkinson's disease. Hum Genet 2004; 114:413-438.

2. Ascherio A, Chen H, Weisskopf MG, et al. Pesticide exposure and risk for Parkinson's disease. Ann Neurol 2006; 60:197-203.

3. Sano I, Gamo T, Kakimoto Y, Taniguchi K, Takesada M, Nishinuma K. Distribution of catechol compounds in human brain. Biochim Biophys Acta 1959; 32:586-587.

Bertler A, Rosengren E. Occurrence and distribution of dopamine in brain and other tissues. Experientia 1959; 15:10-11.

Lindvall O, Bjorklund A. Anatomy of the dopaminergic neuron systems in the rat brain. Adv Biochem Psychopharmacol 1978; 19:1-23.

Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 1988; 334:345-348. Mendez I, Sanchez-Pernaute R, Cooper O, et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease. Brain 2005; 128:1498-1510.

Sulzer D, Bogulavsky J, Larsen KE, et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA 2000; 97:11869-11874.

Liang CL, Nelson O, Yazdani U, Pasbakhsh P, German DC. Inverse relationship between the contents of neuromelanin pigment and the vesicular monoamine transporter-2: human midbrain dopamine neurons. J Comp Neurol 2004; 473:97-106. Kingsbury AE, Marsden CD, Foster OJ. The vulnerability of nigral neurons to Parkinson's disease is unrelated to their intrinsic capacity for dopamine synthesis: an in situ hybridization study. Mov Disord 1999; 14:206-218.

Tong ZY, Kingsbury AE, Foster OJ. Up-regulation of tyrosine hydroxylase mRNA in a sub-population of A10 dopamine neurons in Parkinson's disease. Brain Res Mol Brain Res 2000; 79:45-54.

Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain 1999; 122(Pt 8):1421-1436. Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 1999; 122(Pt 8):1437-1448.

Zecca L, Tampellini D, Gatti A, et al. The neuromelanin of substantia nigra and its interaction with metals. J Neural Transm 2002; 109:663-672.

Zucca FA, Giaveri G, Gallorini M, et al. The neuromelanin of substantia nigra: physiological and pathogenic aspects. Pigment Cell Res 2004; 17:610-617. Speciale SG, Liang CL, Sonsalla PK, Edwards RH, German DC. The neurotoxin 1-methyl-4-phenylpyridinium is sequestered within neurons that contain the vesicular monoamine transporter. Neuroscience 1998; 84:1177-1185.

Gainetdinov RR, Fumagalli F, Wang YM, et al. Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice. J Neurochem 1998; 70:1973-1978.

Miller GW, Erickson JD, Perez JT, et al. Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson's disease. Exp Neurol 1999; 156:138-148.

Gonzalez-Hernandez T, Barroso-Chinea P, De La Cruz Muros I, Del Mar Perez-Delgado M, Rodriguez M. Expression of dopamine and vesicular monoamine transporters and differential vulnerability of mesostriatal dopaminergic neurons. J Comp Neurol 2004; 479:198-215.

Uhl GR. Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion, and parkinsonism. Mov Disord 2003; 18(suppl 7):S71-S80.

Bannon MJ. The dopamine transporter: role in neurotoxicity and human disease. Toxicol Appl Pharmacol 2005; 204:355-360.

Shimada S, Kitayama S, Walther D, Uhl G. Dopamine transporter mRNA: dense expression in ventral midbrain neurons. Brain Res Mol Brain Res 1992; 13:359-362. Ciliax BJ, Drash GW, Staley JK, et al. Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 1999; 409:38-56.

Miller GW, Gainetdinov RR, Levey AI, Caron MG. Dopamine transporters and neuronal injury. Trends Pharmacol Sci 1999; 20:424-429.

Uhl GR. Hypothesis: the role of dopaminergic transporters in selective vulnerability of cells in Parkinson's disease. Ann Neurol 1998; 43:555-560.

26. Haeseleer F, Imanishi Y, Sokal I, Filipek S, Palczewski K. Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. Biochem Biophys Res Comm 2002; 290:615-623.

27. Parent A, Fortin M, Cote PY, Cicchetti F. Calcium-binding proteins in primate basal ganglia. Neurosci Res 1996; 25:309-334.

28. Resibois A, Blachier F, Rogers JH, Lawson DE, Pochet R. Comparison between rat brain calbindin- and calretinin-immuno-reactivities. Adv Exp Med Biol 1990; 269:211-214.

29. Rogers JH, Resibois A. Calretinin and calbindin-D28k in rat brain: patterns of partial co-localization. Neuroscience 1992; 51:843-865.

30. Rogers JH. Immunohistochemical markers in rat brain: colocalization of calretinin and calbindin-D28k with tyrosine hydroxylase. Brain Res 1992; 587:203-210.

31. Liang CL, Sinton CM, German DC. Midbrain dopaminergic neurons in the mouse: co-localization with Calbindin-D28K and calretinin. Neuroscience 1996; 75:523-533.

32. Rogers JH. Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 1987; 105:1343-1353.

33. Resibois A, Rogers JH. Calretinin in rat brain: an immunohistochemical study. Neuroscience 1992; 46:101-134.

34. Isaacs KR, Jacobowitz DM. Mapping of the colocalization of calretinin and tyrosine hydroxylase in the rat substantia nigra and ventral tegmental area. Exp Brain Res 1994; 99:34-42.

35. Krzywkowski P, Jacobowitz DM, Lamour Y. Calretinin-containing pathways in the rat forebrain. Brain Res 1995; 705:273-294.

36. Lavoie B, Parent A. Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. Neuroreport 1991; 2:601-604.

37. German DC, Manaye KF, Sonsalla PK, Brooks BA. Midbrain dopaminergic cell loss in Parkinson's disease and MPTP-induced parkinsonism: sparing of calbindin-D28k-containing cells. Ann NY Acad Sci 1992; 648:42-62.

38. Yamada T, McGeer PL, Baimbridge KG, McGeer EG. Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 1990; 526:303-307.

39. Mouatt-Prigent A, Agid Y, Hirsch EC. Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson's disease? Brain Res 1994; 668:62-70.

40. Airaksinen MS, Thoenen H, Meyer M. Vulnerability of midbrain dopaminergic neurons in calbindin-D28k-deficient mice: lack of evidence for a neuroprotective role of endogenous calbindin in MPTP-treated and weaver mice. Eur J Neurosci 1997; 9:120-127.

41. Klapstein GJ, Vietla S, Lieberman DN, et al. Calbindin-D28k fails to protect hippocam-pal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice. Neuroscience 1998; 85:361-373.

42. A human mitochondrial genome database. A compendium of polymorphisms and mutations of the human mitochondrial DNA. www.mitomap.org

43. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005; 39:359-407.

44. Schapira AH. Mitochondrial disease. Lancet 2006; 368:70-82.

45. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 2006; 38:518-520.

46. Salvioli S, Bonafe M, Capri M, Monti D, Franceschi C. Mitochondria, aging and longevity—a new perspective. FEBS Lett 2001; 492:9-13.

47. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 1992; 2:324-329.

48. Ikebe S, Tanaka M, Ohno K, et al. Increase of deleted mitochondrial DNA in the striatum in Parkinson's disease and senescence. Biochem Biophys Res Commun 1990; 170:1044-1048.

49. Ikebe S, Tanaka M, Ozawa T. Point mutations of mitochondrial genome in Parkinson's disease. Brain Res Mol Brain Res 1995; 28:281-295.

50. Kosel S, Egensperger R, Schnopp NM, Graeber MB. The "common deletion" is not increased in parkinsonian substantia nigra as shown by competitive polymerase chain reaction. Mov Disord 1997; 12:639-645.

51. Sandy MS, Langston JW, Smith MT, Di Monte DA. PCR analysis of platelet mtDNA: lack of specific changes in Parkinson's disease. Mov Disord 1993; 8:74-82.

52. Zhang J, Montine TJ, Smith MA, et al. The mitochondrial common deletion in Parkinson's disease and related movement disorders. Parkinsonism Relat Disord 2002; 8:165-170.

53. Mann VM, Cooper JM, Schapira AH. Quantitation of a mitochondrial DNA deletion in Parkinson's disease. FEBS Lett 1992; 299:218-222.

54. Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006; 38:515-517.

55. Gu G, Reyes PE, Golden GT, et al. Mitochondrial DNA deletions/rearrangements in parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol 2002; 61:634-639.

56. Itoh K, Weis S, Mehraein P, Muller-Hocker J. Defects of cytochrome c oxidase in the sub-stantia nigra of Parkinson's disease: and immunohistochemical and morphometric study. Mov Disord 1997; 12:9-16.

57. Varnum DS, Stevens LC. Aphakia, a new mutation in the mouse. J Hered 1968; 59:147-150.

58. Semina EV, Murray JC, Reiter R, Hrstka RF, Graw J. Deletion in the promoter region and altered expression of pitx3 homeobox gene in aphakic mice. Hum Mol Genet 2000; 9:1575-1585.

59. Smidt MP, van Schaic HS, Lancelot C, et al. Ahomeodomain gene Ptx3 has highly restric-tred brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 1997; 94:13305-13310.

60. Korotkova TM, Ponomarenko AP, Hass HL, Sergeeva OA. Differential expression of the homeobox gene Pitx3 in midbrain dopaminergic neurons. Eur J Neurosci 2005; 22:1287-1293.

61. Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 2003; 100:4245-4250.

62. Hwang DY, Ardayfio P, Kang UJ, Semina EV, Kim KS. Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res 2003; 114:123-131.

63. Smidt MP, Smits SM, Burbach JP. Homeobox gene Pitx3 and its role in the development of dopamine neurons of the substantia nigra. Cell Tissue Res 2004; 318:35-43.

64. Maxwell SL, Ho HY, Kuehner E, Zhao S, Li M. Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopamin-ergic progenitor neurons during mouse development. Dev Biol 2005; 282:467-479.

65. van den Munckhof P, Luc KC, Ste-Marie L, et al. Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 2003; 130:2535-2542.

66. Hwang DY, Fleming SM, Ardayfio P, et al. 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx 3-deficient aphakic mice: behavioral characterization of a novel genetic model of Parkinson's disease. J Neurosci 2005; 25:2132-2137.

67. Ledesma A, de Lacoba MG, Rial E. The mitochondrial uncoupling proteins. Genome Biol 2002; 3:REVIEWS3015.

68. Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 2005; 6:248-261.

69. Andrews ZB, Horvath B, Barnstable CJ, et al. Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease. J Neurosci 2005; 25: 184-191.

70. Kim-Han JS, Dugan LL. Mitochondrial uncoupling proteins in the central nervous system. Antioxid Redox Signal 2005; 7:1173-1181.

71. Kim-Han JS, Reichert SA, Quick KL, Dugan LL. BMCP1: a mitochondrial uncoupling protein in neurons which regulates mitochondrial function and oxidant production. J Neurochem 2001; 79:658-668.

72. Richard D, Clavel S, Huang Q, Sanchis D, Riquier D. Uncoupling protein 2int eh brain: distribution and function. Bioch Soc Trans 2001; 29:812-817.

73. Haeckel O, Wildmann J, Miki T, Seino S, Roeper J. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 2005; 8:1742-1751.

74. Conti B, Sugama S, Lucero J, et al. Uncoupling protein 2 protects dopaminergic neurons from acute 1,2,3,6-methyl-phenyl-tetrahydropyridine toxicity. J Neurochem 2005; 93:493-501.

75. Ho PW, Chu AC, Kwok KH, Kung MH, Ramsden DB, Ho SL. Knockdown of uncoupling protein-5 in neuronal SH-SY5Y cells: Effects on MPP(+)-induced mitochondrial membrane depolarization, ATP deficiency, and oxidative cytotoxicity. J Neurosci Res 2006; 84:1358-66.

76. Rakic P, Sidman RL. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol 1973; 152:103-132.

77. Rakic P, Sidman RL. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 1973; 152:133-161.

78. Rakic P, Sidman RL. Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci USA 1973; 70:240-244.

79. Triarhou LC. Biology and pathology of the Weaver mutant mouse. Adv Exp Med Biol 2002; 517:15-42.

80. Verina T, Tang X, Fitzpatrick L, Norton J, Vogelweid C, Ghetti B. Degeneration of Sertoli and spermatogenic cells in homozygous and heterozygous weaver mice. J Neurogenet 1995; 9:251-265.

81. Eisenberg B, Messer A. Tonic/clonic seizures in a mouse mutant carrying the weaver gene. Neurosci Lett 1989; 96:168-172.

82. Blum M, Weickert C, Carrasco E. The weaver GIRK2 mutation leads to decreased levels of serum thyroid hormone: Characterization of the effect on midbrain dopaminergic neuron survival. Exp. Neurol 1999; 160:413-424.

83. Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 1995; 11:126-129.

84. Slesinger PA, Patil N, Liao YJ, Jan YN, Jan LY, Cox DR. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron 1996; 16:321-331.

85. Hess EJ. Identification of the weaver mouse mutation: the end of the beginning. Neuron 1996; 16:1073-1076.

86. Navarro B, Kennedy ME, Velimirovic B, Bhat D, Peterson AS, Clapham DE. Nonselective and G betagamma-insensitive weaver K+ channels. Science 1996; 272:1950-1953.

87. Lauritzen I, De Weille J, Adelbrecht C, et al. Comparative expression of the inward rectifier K+ channel GIRK2 in the cerebellum of normal and weaver mutant mice. Brain Res 1997; 753:8-17.

88. Wei J, Dlouhy SR, Bayer S, et al. In situ hybridization analysis of Girk2 expression in the developing central nervous system in normal and weaver mice. J Neuropathol Exp Neurol 1997; 56:762-771.

89. Rossi P, De Filippi G, Armano S, Taglietti V, D'Angelo E. The weaver mutation causes a loss of inward rectifier current regulation in premigratory granule cells of the mouse cerebellum. J Neurosci 1998; 18:3537-3547.

90. Rezai Z, Yoon CH. Abnormal Rate of Granule Cell Migration in the Cerebellum of "Weaver" Mutant Mice. Dev Biol 1972; 29:17-26.

91. Maricich SM, Soha J, Trenkner E, Herrup K. Failed cell migration and death of purkinje cells and deep nuclear neurons in the weaver cerebellum. J Neurosci 1997; 17:3675-3683.

92. Schein JC, Hunter DD, Roffler-Tarlov S. Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver. Dev Biol 1998; 204:432-450.

93. Bayer, SA Wills KV, Triarhou LC, Verina T, Thomas JD, Ghetti B. Selective vulnerability of late-generated dopaminergic neurons of the substantia nigra in weaver mutant mice. Proc Natl Acad Sci USA 1995; 92:9137-9140.

94. Marti J, Wills KV, Ghetti B, Bayer SA. The weaver gene continues to target late-generated dopaminergic neurons in midbrain areas at P90. Brain Res Dev Brain Res 2000; 122:173-181.

95. Inanobe A, Yoshimoto Y, Horio Y, et al. Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J Neurosci 1999; 19:1006-1017.

Triarhou LC, Norton J, Ghetti B. Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice. Exp Brain Res 1988; 70:256-265. Graybiel AM, Ohta K, Roffler-Tarlov S. Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. I. Gradients and compartments. J Neu-rosci 1990; 10:720-733.

Roffler-Tarlov S, Pugatch D, Graybiel AM. Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. II. High affinity uptake sites for dopamine. J Neurosci 1990; 10:734-740.

Phillipson OT. The cytoarchitecture of the interfascicular nucleus and ventral tegmental area of Tsai in the rat. J Comp Neurol 1979; 187:85-98.

Nelson EL, Liang CL, Sinton CM, German DC. Midbrain dopaminergic neurons in the mouse: computer-assisted mapping. J Comp Neurol 1996; 369:361-371. Richter JA, Stotz EH, Ghetti B, Simon JR. Comparison of alterations in tyrosine hydrox-ylase, dopamine levels, and dopamine uptake in the striatum of the weaver mutant mouse. Neurochem Res 1992; 17:437-441.

Schmidt MJ, Sawyer BD, Perry KW, Fuller RW, Foreman, MM Ghetti B. Dopamine deficiency in the weaver mutant mouse. J Neurosci 1982;2:376-380.

Simon JR, Richter JA, Ghetti B. Age-dependent alterations in dopamine content, tyro-sine hydroxylase activity, and dopamine uptake in the striatum of the weaver mutant mouse. J Neurochem 1994; 62:543-548.

Simon JR, Ghetti B. The weaver mutant mouse as a model of nigrostriatal dysfunction. Mol Neurobiol 1994; 9:183-189.

Roffler-Tarlov S, Graybiel AM. Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and nonlimbic striatum. Nature 1984; 307:62-66. Liesi P, Stewart RR, Wright JM. Involvement of GIRK2 in postnatal development of the weaver cerebellum. J Neurosci Res 2000; 60:164-173.

Liss B, Neu A, Roeper J. The weaver mouse gain-of-function phenotype of dopaminer-gic midbrain neurons is determined by coactivation of wvGirk2 and K-ATP channels. J Neurosci 1999; 19:8839-8848.

Bandmann O, Davis MB, Marsden CD, Wood NW. The human homologue of the weaver mouse gene in familial and sporadic Parkinson's disease. Neuroscience 1996; 72:877-879. Chandy KG, Gutman GA. Nomenclature for mammalian potassium channel genes. Trends Pharmacol Sci 1993; 14:434.

Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 2000; 52:557-594. CA Doupnik, N Davidson, HA Lester. The inward rectifier potassium channel family. Curr Opin Neurobiol 1995; 5:268-277.

Liss B, Bruns R, Roeper J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. Embo J 1999; 18: 833-846,.

Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature 2006; 440:470-476.

Seino S, Iwanaga T, Nagashima K, Miki T. Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice. Diabetes 2000; 49:311-318.

Polak M, Shield J. Neonatal Diabetes Mellitus-genetic aspects 2004. Pediatr Endocrinol Rev 2004; 2:193-198.

Hussain K, Cosgrove KE. From congenital hyperinsulinism to diabetes mellitus: the role of pancreatic beta-cell KATP channels. Pediatr Diabetes 2005; 6:103-113. Gloyn AL, Siddiqui J, Ellard S. Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2006; 27:220-231.

Proks P, Lippiat JD. Membrane ion channels and diabetes. Curr Pharm Des 2006; 12:485-501.

Was this article helpful?

0 0
Diabetes Sustenance

Diabetes Sustenance

Get All The Support And Guidance You Need To Be A Success At Dealing With Diabetes The Healthy Way. This Book Is One Of The Most Valuable Resources In The World When It Comes To Learning How Nutritional Supplements Can Control Sugar Levels.

Get My Free Ebook


Post a comment