## Theories Of Recall And Recognition

Recognition memory is usually much better than recall, and many theorists have tried to understand why this should be the case. In order to do so, they have focused on the processes involved in recall and recognition. It is to such theories that we now turn.

Two-process theory

The two-stage or two-process theory makes the following assumptions (see Watkins & Gardiner, 1979), for a review:

• Recall involves a search or retrieval process, followed by a decision or recognition process based on the appropriateness of the retrieved information.

• Recognition involves only the second of these processes.

Two-process theory claims that recall involves two fallible stages, whereas recognition involves only one. As a result, recognition is superior to recall. According to this theory, recall requires an item to be retrieved and then recognised. The notion that the probability of recall is determined by the probability of retrieval multiplied by the probability of recognition was tested by Bahrick (1970) using cued recall (words were presented as cues for to-be-remembered list words). He used the probability of the cue producing the to-be-remembered word in free association as an estimate of the retrievability of the to-be-remembered word, and he ascertained the probability of recognition by means of a standard recognition test. The level of cued recall was predicted well by multiplying together those two probabilities.

Further support for the two-process theory was obtained by Rabinowitz, Mandler, and Patterson (1977). They compared recall of a categorised word list (a list containing words belonging to several categories) under standard instructions and under instructions to generate as many words as possible from the list categories, saying aloud only those that participants thought had actually been presented. Participants given the latter generation-recognition instructions recalled 23% more words than those given standard recall instructions. Thus, the generate-recognise strategy described by the two-process theory can be useful.

Two-process theory also provides an explanation for the frequency paradox (common words are better recalled than rare words, but the opposite is the case for recognition memory; see Kintsch, 1970). Common words have more associative links to other words than do rare words, and so are easier to retrieve. However, the decision process favours rare words over common ones, because it is easier to make decisions about words that have relatively little irrelevant information from previous encounters stored in long-term memory.

### Evaluation

Two-process theory has attracted much criticism. Recall is sometimes better than recognition, which should not happen according to two-process theory. In a study by Muter (1978), participants were presented with names of people (e.g., DOYLE, FERGUSON, THOMAS) and asked to circle those they "recognised as a person who was famous before 1950". They were then given recall cues in the form of brief descriptions plus first names of the famous people whose surnames had appeared on the recognition test (e.g., author of the Sherlock Holmes stories: Sir Arthur Conan_; Welsh poet: Dylan_). Participants recognised only 29% of the names but recalled 42%.

Recognition failure of recallable words also poses problems for two-process theory. This occurs when learning is followed by a recognition memory test and then a test of recall, and some of the items that are not recognised are subsequently recalled (e.g., Tulving & Thomson, 1973). According to two-process theory, recognition failure should practically never happen. This is because recall allegedly requires both retrieval and recognition of the to-be-remembered item.

Another problem with two-process theory is that its account of recognition memory is thread-bare. As we will see shortly, recognition memory can involve at least two different kinds of processes (Gardiner & Java, 1993), and the theory simply cannot handle such complexities.

### Encoding specificity

Tulving (1982, 1983) assumed that there are basic similarities between recall and recognition. He also assumed that contextual factors are important, and that what is stored in memory represents a combination of information about the to-be-remembered material and about the context. These notion were incorporated into his encoding specificity principle, which was discussed earlier. This principle applies equally to recall and recognition. Attempts to test the encoding specificity principle typically involve two learning conditions and two retrieval conditions. This allows the experimenter to show (as is claimed in the encoding specificity principle) that memory depends on both the information in the memory trace stemming from the learning experience and the information available in the retrieval environment.

A concrete example of this research strategy is a study by Thomson and Tulving (1970). They presented pairs of words in which the first word was the cue and the second word was the to-be-remembered word. The cues were either weakly associated with the list words (e.g., "Train-BLACK") or were strongly associated (e.g., "White-BLACK"). Some of the to-be-remembered items were tested by weak cues (e.g., "Train-?") and others were tested by strong cues (e.g., "White-?"). The results are shown in Figure 6.16. As expected on the encoding specificity principle, recall performance was best when the cues provided at recall were the same as those provided at input. Any change in the cues lowered recall, even when the shift was from weak cues at input to strong cues at recall.

Mean word recall as a function of input cues (strong or weak) and output cues (strong or weak). Data from Thomson and Tulving (1970).

## Stop Anxiety Attacks

Here's How You Could End Anxiety and Panic Attacks For Good Prevent Anxiety in Your Golden Years Without Harmful Prescription Drugs. If You Give Me 15 minutes, I Will Show You a Breakthrough That Will Change The Way You Think About Anxiety and Panic Attacks Forever! If you are still suffering because your doctor can't help you, here's some great news...!

Get My Free Ebook