Language And Thought

The major language processes discussed in this chapter and the two previous ones raise the issue of the relationship between language and thought. For example, speaking and writing are both activities in which thinking about what one wants to say or write (the intended message) is translated into language.

The best known theory about the interrelationship between language and thought was put forward by Benjamin Lee Whorf (1956). He was a fire prevention officer for an insurance company who spent his spare time working in linguistics. According to his hypothesis of linguistic relativity (known as the Whorfian hypothesis), language determines or influences thinking. It is useful to distinguish between the strong and the weak form of the Whorfian hypothesis (Hunt & Agnoli, 1991). According to the strong hypothesis, language determines thinking, implying that some thoughts expressible in one language will not be expressible in a second language. This is the issue of translatability: can all sentences in one language be translated accurately into sentences in a second language? There is little support for the strong hypothesis.

According to the weak form of the Whorfian hypothesis, language influences thought. This is a more reasonable hypothesis. As we will see, it has been tested mainly by studies of the effects of language on memory and perception.

Casual inspection of the world's languages indicates there are significant differences among them. For example, the Hanuxoo people in the Philippines have 92 different names for different varieties of rice, and there are hundreds of camel-related words in Arabic. It is possible that these differences influence thought. A more plausible explanation is that different environmental conditions affect the things people think about, and this in turn affects their linguistic usage. Thus, these differences occur because thought affects language rather than because language affects thought.

Memory, perception, and language

There has been a fair amount of research concerned with possible cultural differences in memory for colours. Lenneberg and Roberts (1956) found that Zuni speakers made more errors than English speakers in recognising yellows and oranges. The relevance of this finding is that there is only one word in the Zuni language to refer to yellows and oranges. Although the findings of Lenneberg and Roberts suggested that language affects memory, later studies brought this conclusion into doubt.

Heider (1972) used the fact that there are 11 basic colour words in English, and each of these words has one generally agreed best or focal colour. English speakers find it easier to remember focal than non-focal colours, and Heider wondered whether the same would be true of the Dani. The Dani are a Stone-Age agricultural people living in Indonesian New Guinea, and their language has only two basic colour terms: "mola" for bright, warm hues, and "mili" for dark, cold hues. Heider (1972) found that the Dani and Americans both showed better recognition memory for focal colours. However, the overall memory performance of the Dani was much worse than that of Americans, perhaps because of the limited colour terms available to the Dani.

The research of Heider and others on memory for colours suggests that the similarities among cultures are far more pronounced than the dissimilarities. This is in spite of the fact that there are considerable differences from one language to the next in the terms available to describe colours. However, numerous languages have words for the same 11 focal colours, and it seems from work on the physiology of colour vision (DeValois & Jacobs, 1968) that these colours are processed specially by the visual system.

However, some research suggests that language can affect memory for colours. In a study by Schooler and Engstler-Schooler (1990), participants were shown colour chips that were not focal colours, and were or were not asked to label them. Those asked to label the colours did worse than the non-labellers on recognition memory, suggest ing that colour memory was distorted by language in the form of labelling. In a study by Stefflre, Castillo Vales, and Morley (1966), memory for colour was compared in Spanish and Mayan speakers. There were significant differences, which were related to differences in linguistic codability (ease of verbal labelling) of the colours between the two languages.

Language can also affect perceptual processes. Miyawaki et al. (1975) compared English and Japanese speakers with respect to their perception of sounds varying between a pure /l/ and a pure /r/. English speakers make a sharp perceptual distinction between similar sounds on either side of the categorical boundary between "l" and "r"; this is known as categorical speech perception. No such perceptual distinction is made by Japanese speakers, presumably because there is no distinction between /l/ and /r/ in the Japanese language.

Research on the effects of language on colour perception was reported by Davies et al. (1998), who compared speakers of English and of Setswana, a language spoken in Botswana. They were given the task of deciding which of three colours was least like the other two, and there were crucial trials on which any linguistic influences should have led the two groups to make different choices. The findings were as follows: "Our data show a striking similarity between language groups in their choice of similarities and differences among addition, there are small, but reliable differences between the two samples associated with linguistic differences" (Davies et al., 1998, p. 14).

Similar findings were reported by Davies (1998). Speakers of English, Setswana, and Russian were asked to sort 65 colours into between 2 and 12 groups on the basis of perceptual similarity. English has 11 basic colour terms, Setswana has 5, and Russian has 12, and it was thought that these differences might influence performance. However, "The most striking feature of the results was the marked similarity of the groups chosen across the three language samples" (Davies, 1998, p. 433). In addition, however, there were minor influences of language. For example, Setswana has only one word to describe green and blue, and Setswana speakers were more likely than English and Russian speakers to group blue and green colours together.

In sum, the evidence indicates that language has less impact on cognition than was assumed by Whorf. However, careful research reveals that language exerts modest influences on some perceptual and memorial processes, and so a weak form of the Whorfian hypothesis is tenable.

Cognitive approach

Hunt and Agnoli (1991) put forward a cognitive account of the Whorfian hypothesis. The essence of their position was as follows (1991, p. 379):

Different languages lend themselves to the transmission of different types of messages. People consider the costs of computation when they reason about a topic. The language that they use will partly determine those costs. In this sense, language does influence cognition.

Thus, any given language makes it easy to think in certain ways and hard to think in other ways, and this is why thinking is influenced by language.

An especially interesting demonstration of how language can influence thinking was provided by Hoffman, Lau, and Johnson (1986). Bilingual English-Chinese speakers read descriptions of individuals, and were later asked to provide free interpretations of the individuals described. The descriptions conformed to either Chinese or English stereotypes of personality. For example, there is a stereotype of the artistic type in English, consisting of a mixture of artistic skills, moody and intense temperament, and bohemian lifestyle, but this stereotype does not exist in Chinese. Bilinguals thinking in Chinese made use of Chinese stereo-types in their free impressions, whereas bilinguals thinking in English used English stereotypes. This suggests that the kinds of inferences we draw can be much influenced by the language in which we are thinking.

More evidence consistent with Hunt and Agnoli (1991) was reported by Pederson et al. (1998). They pointed out that space can be coded in either a relative system (e.g., left; right; up; down) or an absolute system (e.g., north; south). Pederson et al. (1998) gave speakers of 13 languages a non-linguistic spatial reasoning task which could be solved using either a relative or an absolute system. The key finding was that participants' choice of system was determined largely by the dominant system of spatial coding in their native language, presumably because it was easier for them to do this.


Hunt and Agnoli (1991) have provided a plausible cognitive account of the Whorfian hypothesis, and there is a fair amount of evidence consistent with their account. Most of the evidence supporting this cognitive theory (e.g., Hoffman et al., 1986; Pederson et al., 1998) has used tasks that give the participants flexibility in the approach they adopt, and so provide scope for language to influence performance. What is lacking so far is a systematic programme of research to establish clearly that language influences thought in the ways specified by Hunt and Agnoli (1991). More specifically, Hunt and Agnoli (1991) emphasised the importance of computational costs, but these costs have rarely been assessed.

Business Correspondence

Business Correspondence

24 chapters on preparing to write the letter and finding the proper viewpoint how to open the letter, present the proposition convincingly, make an effective close how to acquire a forceful style and inject originality how to adapt selling appeal to different prospects and get orders by letter proved principles and practical schemes illustrated by extracts from 217 actual letter.

Get My Free Ebook

Post a comment