A: Yolk.

The correct answer to the last question is "albumen". However, 85% of these participants gave the wrong answer, because it rhymed with the previous answers. In contrast, of those participants only asked the last question, a mere 5% responded "yolk".

It is not clear that action slips obtained under laboratory conditions resemble those typically found under naturalistic conditions. As Sellen and Norman (1992, p. 334) pointed out, many naturally occurring action slips occur:

... when a person is internally preoccupied or distracted, when both the intended actions and the wrong actions are automatic, and when one is doing familiar tasks in familiar surroundings. Laboratory situations offer completely the opposite conditions. Typically, subjects are given an unfamiliar, highly contrived task to accomplish in a strange environment. Most subjects arrive motivated to perform well and. are not given to internal preoccupation. In short, the typical laboratory environment is possibly the least likely place where we are likely to see truly spontaneous, absent-minded errors.

This analysis may be too pessimistic. As we will see shortly, Robertson et al. (1997) and Hay and Jacoby (1996) have studied action slips in the laboratory to bring out some of the key aspects of naturally occurring action slips.

Frontal lobe damage

As Robertson et al. (1997) pointed out, there is convincing evidence that patients with traumatic brain injury causing damage to the frontal lobes and white matter of the brain have severe problems with attention and concentration. Robertson et al. devised a task (the Sustained Attention to Response Task) to assess the tendency of these patients to produce action slips. The task involves presenting a long sequence of random digits, and the task is to respond with a key press to all digits except the digit 3. Failures to withhold responses to the digit 3 are regarded as action slips. Robertson et al. (1997) found that patients produced many more action slips than normal controls (30% vs. 12%, respectively). They also found among the patients that there was a correlation of -.58 between pathological severity of their symptoms and the number of action slips produced.

The findings of Robertson et al. (1997) suggest that sustained attention is needed to avoid action slips. They also suggest that the frontal lobes and the white matter of the brain play an important role in sustained attention, so that damage to these areas makes an individual vulnerable to action slips.

Theories of action slips

Hay and Jacoby (1996) argued that action slips are most likely to occur when two conditions are satisfied:

1. The correct response is not the strongest or most habitual one.

2. Attention is not fully applied to the task of selecting the correct response.

For example, suppose you are looking for your house key. If it is not in its usual place, you are still likely to waste time by looking there first of all. If you are late for an important appointment as well, you may find it hard to focus your attention on thinking about other places in which the key might have been put. As a result, you may spend a lot of time looking in several wrong places.

Hay and Jacoby (1996) tested this theoretical approach in a study in which the participants had to complete paired associates (e.g., knee: b _ n _). Sometimes the correct response on the basis of a previous learning task was also the strongest response (e.g., bend), and sometimes the correct response was not the strongest response (e.g., bone). The participants had either 1 second or 3 seconds to respond. Hay and

Stop Anxiety Attacks

Stop Anxiety Attacks

Here's How You Could End Anxiety and Panic Attacks For Good Prevent Anxiety in Your Golden Years Without Harmful Prescription Drugs. If You Give Me 15 minutes, I Will Show You a Breakthrough That Will Change The Way You Think About Anxiety and Panic Attacks Forever! If you are still suffering because your doctor can't help you, here's some great news...!

Get My Free Ebook

Post a comment