Figure

Mean words recalled as a function of list type (associatively related or unrelated) and orienting task. Data from Hyde and Jenkins (1973).

Levels-of-processing theory

Craik and Lockhart (1972) proposed a broad framework for memory, arguing that it was too general to be regarded as a theory. However, because they made several specific predictions, it will be treated here as a theory. They assumed that attentional and perceptual processes at the time of learning determine what information is stored in long-term memory. There are various levels of processing, ranging from shallow or physical analysis of a stimulus (e.g., detecting specific letters in words) to deep or semantic analysis. Craik (1973, p. 48) defined depth as "the meaningfulness extracted from the stimulus rather than .the number of analyses performed upon it." The key theoretical assumptions made by Craik and Lockhart (1972) were as follows:

• The level or depth of processing of a stimulus has a large effect on its memorability.

• Deeper levels of analysis produce more elaborate, longer lasting, and stronger memory traces than do shallow levels of analysis.

The findings of Hyde and Jenkins (1973), as well as those of many others, accord with these assumptions.

Craik and Lockhart (1972) distinguished between maintenance and elaborative rehearsal. Maintenance rehearsal involves repeating analyses that have previously been carried out, whereas elaborative rehearsal involves deeper or more semantic analysis of the learning material. According to the theory, only elaborative rehearsal rehearsal improves long-term memory. This contrasts with the view of Atkinson and Shiffrin (1968) that rehearsal always enhances long-term memory.

Craik and Lockhart (1972) overstated their position. Maintenance rehearsal typically increases long-term memory, but by less than elaborative rehearsal. For example, Glenberg, Smith, and Green (1977) found that a nine-fold increase in the time devoted to maintenance rehearsal only increased recall by 1.5%, but increased recognition memory by 9%. Maintenance rehearsal may have prevented the formation of associations among the items in the list, and such associations benefit recall more than recognition.

Mean words recalled as a function of list type (associatively related or unrelated) and orienting task. Data from Hyde and Jenkins (1973).

Elaboration

Craik and Tulving (1975) argued that elaboration of processing (i.e., the amount of processing of a particular kind) is important. Participants were presented on each trial with a word and a sentence containing a blank, and decided whether the word fitted into the blank space. Elaboration was manipulated by varying the complexity of the sentence frame between the simple (e.g., "She cooked the_"), and the complex (e.g., "The great bird swooped down and carried off the struggling_"). Cued recall was twice as high for words accompanying complex sentences, suggesting that elaboration benefits long-term memory.

Long-term memory depends on the kind of elaboration as well as on the amount of elaboration. Bransford et al. (1979) presented either minimally elaborated similes (e.g., "A mosquito is like a doctor because they both draw blood") or multiply elaborated similes (e.g., "A mosquito is like a raccoon because they both have heads, legs, jaws"). Recall was much better for the minimally elaborated similes than for the multiply elaborated ones, indicating that the nature and degree of precision of semantic elaborations need to be considered.

Distinctiveness

Eysenck (1979) argued that long-term memory is affected by distinctiveness of processing. Thus, memory traces that are distinctive or unique will be more readily retrieved than those resembling other memory traces. Eysenck and Eysenck (1980) tested this theory by using nouns having irregular graphemephoneme correspondence (i.e., words not pronounced in line with pronunciation rules, such as "comb" with its silent "b"). Participants performed the non-semantic orienting task of pronouncing such nouns as if they had regular grapheme-phoneme correspondence, which presumably produced distinctive and unique memory traces (non-semantic, distinctive condition). Other nouns were simply pronounced in their normal fashion (non-semantic, non-distinctive condition), and still others were processed in terms of their meaning (semantic, distinctive and semantic, non-distinctive).

Words in the non-semantic, distinctive condition were much better recognised than those in the non-semantic, non-distinctive condition (see Figure 6.10). Indeed, they were remembered almost as well as the words in the semantic conditions. These findings show the importance of distinctiveness to long-term memory.

Evaluation

Processes during learning have a major impact on subsequent long-term memory. This may sound obvious, but surprisingly little research pre-1972 involved a study of learning processes and their effects on memory. It is also valuable that elaboration and distinctiveness of processing have been identified as important factors in learning and memory.

On the negative side, it is hard to decide the level of processing being used by learners. The problem is caused by the lack of any independent measure of processing depth. This can lead to the unfortunate state of affairs described by Eysenck (1978, p. 159):

There is a danger of using retention-test performance to provide information about the depth of processing, and then using the putative [alleged] depth of processing to 'explain' the retention-test performance, a self-defeating exercise in circularity.

However, it is sometimes possible to provide an independent measure of depth (e.g., Parkin, 1979). Gabrieli et al. (1996) argued that functional magnetic resonance imaging (fMRI) could be used to identify the brain regions involved in different kinds of processing. They presented words that were to receive semantic or

Recognition-memory performance as a function of the depth and distinctiveness of processing. Data from Eysenck and Eysenck (1980).

Stop Anxiety Attacks

Stop Anxiety Attacks

Here's How You Could End Anxiety and Panic Attacks For Good Prevent Anxiety in Your Golden Years Without Harmful Prescription Drugs. If You Give Me 15 minutes, I Will Show You a Breakthrough That Will Change The Way You Think About Anxiety and Panic Attacks Forever! If you are still suffering because your doctor can't help you, here's some great news...!

Get My Free Ebook


Post a comment