The spatial and temporal ranges of some techniques used to study brain functioning. Adapted from Churchland and Sejnowski (1991).

atoms moving around rapidly in space, so it is claimed that cognitive psychologists do not need to know the fine-grain neurophysiological workings of the brain.

A different position was advocated by Churchland and Sejnowski (1991, p. 17), who suggested:

It would be convenient if we could understand the nature of cognition without understanding the nature of the brain itself. Unfortunately, it is difficult, if not impossible, to theorise effectively on these matters in the absence of neurobiological constraints. The primary reason is that computational space is consummately vast, and there are many conceivable solutions to the problems of how a cognitive operation could be accomplished. Neurobiological data provide essential constraints on computational theories, and they consequently provide an efficient means for narrowing the search space. Equally important, the data are also richly suggestive in hints concerning what might really be going on.

In line with these proposals, there are some psychological theories that are being fairly closely constrained by findings in the neurosciences (see Hummel & Holyoak, 1997, and Chapter 15).

Neurophysiologists have provided several kinds of valuable information about the brain's structure and functioning. In principle, it is possible to establish where in the brain certain cognitive processes occur, and when these processes occur. Such information can allow us to determine the order in which different parts of the brain become active when someone is performing a task. It also allows us to find out whether two tasks involve the same parts of the brain in the same way, or whether there are important differences. As we will see, this can be very important theoretically.

The various techniques for studying brain functioning differ in their spatial and temporal resolution (Churchland & Sejnowski, 1991). Some techniques provide information about the single-cell level, whereas others tell us about activity over much larger groups of cells. In similar fashion, some techniques provide information about brain activity on a millisecond-by-millisecond basis (which corresponds to the timescale for thinking), whereas others indicate brain activity only over much longer time periods such as minutes or hours.

Some of the main techniques will be discussed to give the reader some idea of the weapons available to cognitive neuroscientists. The spatial and temporal resolutions of some of these techniques are shown in Figure 1.8. High spatial and temporal resolutions are advantageous if a very detailed account of brain functioning is required, but low spatial and temporal resolutions can be more useful if a more general view of brain activity is required.

Stop Anxiety Attacks

Stop Anxiety Attacks

Here's How You Could End Anxiety and Panic Attacks For Good Prevent Anxiety in Your Golden Years Without Harmful Prescription Drugs. If You Give Me 15 minutes, I Will Show You a Breakthrough That Will Change The Way You Think About Anxiety and Panic Attacks Forever! If you are still suffering because your doctor can't help you, here's some great news...!

Get My Free Ebook

Post a comment