Divided Attention

What happens when people try to do two things at once? The answer clearly depends on the nature of the two "things". Sometimes the attempt is successful, as when an experienced motorist drives a car and holds a conversation at the same time, or a tennis player notes the position of his or her opponent while running at speed and preparing to make a stroke. At other times, as when someone tries to rub their stomach with one hand while patting their head with the other, there can be a complete disruption of performance.

Hampson (1989) made the key point that focused and divided attention are more similar than might have been expected. Factors such as use of different modalities which aid focused or selective attention generally also make divided attention easier. According to Hampson (1989, p. 267), "anything which minimises interference between processes, or keeps them 'further apart' will allow them to be dealt with more readily either selectively or together."

Theoretically, breakdowns of performance when two tasks are combined shed light on the limitations of the human information-processing system. Some theorists (e.g., Norman & Shallice, 1986) argue that such breakdowns reflect the limited capacity of a single multi-purpose central processor or executive sometimes described as "attention". Other theorists are more impressed by our apparent ability to perform two fairly complex tasks at the same time without disruption or interference. Such theorists favour the notion of several specific processing resources, arguing that there will be no interference between two tasks provided that they make use of different processing resources.

More progress has been made empirically than theoretically. It is possible to predict fairly accurately whether or not two tasks can be combined successfully, but the accounts offered by different theorists are very diverse. Accordingly, we will discuss some of the factual evidence before moving on to the murkier issue of how the data are to be explained.

Factors determining dual-task performance

Task similarity

When we think of pairs of activities that are performed well together in everyday life, the examples that come to mind usually involve two rather dissimilar activities (e.g., driving and talking; reading and listening to music). As we have seen, when people shadow or repeat back prose passages while learning auditorily presented words, their subsequent recognition-memory performance for the words is at chance level (Allport et al., 1972). However, the same authors found that memory was excellent when the to-be-remembered material consisted of pictures.

Various kinds of similarity need to be distinguished. Wickens (1984) reviewed the evidence and concluded that two tasks interfere to the extent that they have the same stimulus modality (e.g., visual or auditory), make use of the same stages of processing (input, internal processing, and output), and rely on related memory codes (e.g., verbal or visual). Response similarity is also important. McLeod (1977) asked participants to perform a continuous tracking task with manual responding together with a tone-identification task. Some participants responded vocally to the tones, whereas others responded with the hand not involved in the tracking task. Performance on the tracking task was worse with high response similarity (manual responses on both tasks) than with low response similarity (manual responses on one task and vocal ones on the other).

Similarity of stimulus modality has probably been studied most thoroughly. Treisman and Davies (1973) found two monitoring tasks interfered with each much more when the stimuli on both tasks were in the same sense modality (visual or auditory) than when they were in different modalities.

It is often very hard to measure similarity. How similar are piano playing and poetry writing, or driving a car and watching a football match? Only when there is a better understanding of the processes involved in the performance of such tasks will sensible answers be forthcoming.


Common sense suggests that the old saying "Practice makes perfect" is especially applicable to dual-task performance. For example, learner drivers find it almost impossible to drive and hold a conversation, whereas expert drivers find it fairly easy. Support for this commonsensical position was obtained by Spelke, Hirst, and Neisser (1976) in a study on two students called Diane and John. These students received five hours' training a week for four months on a variety of tasks. Their first task was to read short stories for comprehension while writing down words to dictation. They found this very hard initially, and their reading speed and handwriting both suffered considerably. After six weeks of training, however, they could read as rapidly and with as much comprehension when taking dictation as when only reading, and the quality of their handwriting had also improved.

In spite of this impressive dual-task performance, Spelke et al. were still not satisfied. Diane and John could recall only 35 out of the thousands of words they had written down at dictation. Even when 20 successive dictated words formed a sentence or came from a single semantic category, the two students were unaware of that. With further training, however, they learned to write down the names of the categories to which the dictated words belonged while maintaining normal reading speed and comprehension.

Spelke et al. (1976, p. 229) wondered whether the popular notion that we have limited processing capacity is accurate, basing themselves on the dramatic findings with John and Diane: "People's ability to develop skills in specialised situations is so great that it may never be possible to define general limits on cognitive capacity." However, there are alternative ways of interpreting their findings. Perhaps the dictation task was performed rather automatically, and so placed few demands on cognitive capacity, or there might have been a rapid alternation of attention between reading and writing. Hirst et al. (1980) claimed that writing to dictation was not done automatically, because the students understood what they were writing. They also claimed that reading and dictation could only be performed together with success by alternation of attention if the reading material were simple and highly redundant. However, they found that most participants could still read and take dictation effectively when less redundant reading matter was used.

Do the studies by Spelke et al. (1976) and by Hirst et al. (1980) show that two complex tasks can be performed together without disruption? One of the participants used by Hirst et al. was tested at dictation without reading, and made fewer than half the number of errors that occurred when reading at the same time. Furthermore, the reading task gave the participants much flexibility in terms of when they attended to the reading matter, and such flexibility means that there may well have been some alternation of attention between tasks.

There are other cases of apparently successful performance of two complex tasks, but the requisite skills were always highly practised. Expert pianists can play from seen music while repeating back or shadowing heard speech (Allport et al., 1972), and an expert typist can type and shadow at the same time (Shaffer, 1975). These studies are often regarded as providing evidence of completely successful task combination. However, there are signs of interference when the data are inspected closely (Broadbent, 1982).

Why might practice aid dual-task performance? First, participants may develop new strategies for performing the tasks to minimise task interference. Second, the demands that a task makes on attentional or other central resources may be reduced with practice. Third, although a task initially requires the use of several specific processing resources, practice may reduce the number of resources required. These possibilities are considered in more detail later.

Task difficulty

The ability to perform two tasks together depends on their difficulty, and there are several studies showing the expected pattern of results. For example Sullivan (1976) used the tasks of shadowing an auditory message and detecting target words on a non-shadowed message at the same time. When the shadowing task was made harder by using a less redundant message, fewer targets were detected on the non-shadowed message. However, it is hard to define "task difficulty" with any precision.

The demands for resources of two tasks performed together might be thought to equal the sums of the demands of the two tasks when performed separately. However, the necessity to perform two tasks together often introduces new demands of co-ordination and avoidance of interference. Duncan (1979) asked his participants to respond to closely successive stimuli, one requiring a left-hand response and the other a right-hand response. The relationship between each stimulus and response was either corresponding (e.g., rightmost stimulus calling for response of the rightmost finger) or crossed (e.g., leftmost stimulus calling for response of the rightmost finger). Performance was poor when the relationship was corresponding for one stimulus but crossed for the other. In these circumstances, the participants were sometimes confused, with their errors being largely those expected if the inappropriate stimulus-response relationship had been selected.

Bottleneck theories

Welford (1952) argued that there is a bottleneck in the processing system making it hard (or impossible) for two decisions about the appropriate responses to two different stimuli to be made at the same time. Much of the supporting evidence comes from studies of the psychological refractory period. In these studies, there

Was this article helpful?

+2 0
Delicious Diabetic Recipes

Delicious Diabetic Recipes

This brilliant guide will teach you how to cook all those delicious recipes for people who have diabetes.

Get My Free Ebook


Post a comment