Discovery By Analogy

Analogical thinking has often been identified as a core method in creativity. Koestler (1964) gives accounts of creativity in disparate domains— including literature, the arts, and science—that result from the juxtaposition of two sets of very different ideas. Various creative individuals report solutions to unfamiliar problems based on deep analogies. For example, Rutherford used a solar system analogy to understand the structure of the atom; viewing the electrons as revolving around the nucleus in the same way that the planets revolve around the sun (see Gentner, 1983, and Figure 15.4). So, when people do not have knowledge that is directly relevant to a problem, they apply knowledge indirectly, by analogy to the problem.

Analogical thought involves a mapping of the conceptual structure of one set of ideas (called a base domain) into another set of ideas (called a target domain). Technically, there are two key processes in the ability; analogue retrieval and analogical mapping. In retrieval, the thinker must somehow recall a domain (or analogue) that corresponds to the problem they face. In mapping, the two domains or analogues are matched against one another to find corresponding concepts in each, usually to find corresponding relational structure (see Gentner, 1983; Holyoak & Thagard, 1995; Keane, 1985a, 1988). For example, at some point Rutherford had to retrieve or recognise that the solar system could be used to understand the atom, and then map the two together to make the revolution of the planets around the sun correspond to the revolution of the electrons around the nucleus. In essence, analogies involve similarities in the relational structure of two things, rather than in their superficial appearances (e.g., the solar system and atom are relationally similar although they involve very different sets of objects). As such, the causal, relational structure of the domain plays an important role in supporting this mapping process.

Gick and Holyoak (1980, 1983) demonstrated analogical problem solving by giving subjects analogous stories to Duncker's (1945) "radiation problem". The radiation problem involves a doctor's attempt to destroy a malignant tumour using rays. The doctor needs to use high-intensity rays to destroy the tumour, but these high-intensity rays will destroy the healthy tissue surrounding the tumour. If the doctor uses low-intensity rays then the healthy tissue will be saved but the tumour will remain unaffected too. This dilemma can be solved by a "convergence solution" which proposes that the doctor send low-intensity rays from a number of different directions so that they converge on the tumour, summing to a high intensity to destroy it. However, only about 10% of subjects produce this solution if they are given the problem on its own.

Business Correspondence

Business Correspondence

24 chapters on preparing to write the letter and finding the proper viewpoint how to open the letter, present the proposition convincingly, make an effective close how to acquire a forceful style and inject originality how to adapt selling appeal to different prospects and get orders by letter proved principles and practical schemes illustrated by extracts from 217 actual letter.

Get My Free Ebook

Post a comment