References

1. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: Autoexcision and autocycliza-tion of the ribosomal RNA intervening sequence of Tetrahymena. Cell 1982; 31:147-157.

2. Cech TR. Self-splicing of group I introns. Annu. Rev. Biochem 1990; 59:543-568.

3. Cech TR. Structure and mechanism of the large catalytic RNAs: Group I and group II introns and ribonuclease P. In: Gesteland RF, Atkins JF, Eds. The RNA World. Cold Spring Harbor. NY: Cold Spring Harbor Press, 1993:239-269.

4. Altman S. Ribonuclease P: An enzyme with a catalytic RNA subunit. Adv Enzymol Related Areas Mol Biol 1989; 62:1-36.

5. Symons RH. Small catalytic RNAs. Annu. Rev. Biochem 1992; 61:641-671.

6. Cech TR. Ribozyme engineering. Curr. Opin. Struct. Biol 1992; 2:605-609.

7. Rossi JJ, Sarver N. Catalytic antisense RNA (ribozymes): Their potential and use as anti-HIV-a therapeutic agents. Adv Exp Med Biol 1992; 312:95-109.

8. Poeschla E, Wong-Staal F. Antiviral and anticancer ribo-zymes. Curr. Opin. Oncol 1994; 6:601-606.

9. Zaia JA, Chatteijee S, Wong KK, Elkins D, Taylor NR, Rossi JJ. Status of ribozyme and antisense-based developmental approaches for anti-HIV therapy. Ann. N.Y. Acad. Sci 1992; 660:95-106.

10. Thompson JD, Macejak D, Couture L, Stinchcomb DT. Ribozymes in gene therapy. Nat. Med 1995; 1:277-278.

11. Rossi JJ. Ribozymes, genomics and therapeutics. Chem. Biol 1999; 5:33-37.

12. Sullenger BA. Revising messages traveling along the cellular information superhighway. Chem. Biol 1995; 2:249-253.

13. Rossi JJ. Ribozymes to the rescue: Repairing genetically defective mRNAs. Trends Genet 1998; 14:295-298.

14. Sullenger BA. RNA repair as a novel approach to genetic therapy. Gene Ther 1999; 6:461-462.

15. Cech TR, Zaug AJ, Grabowski PJ. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: Involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 1981; 27:487-496.

16. Michel F, Jacquier A, Dujon B. Comparison of fungal mito-chondrial introns reveals extensive homologies in RNA secondary structure. Biochemie 1982; 64:867-881.

17. Davies RW, Waring RB, Ray JA, Brown TA, Scazzocchio C. Making ends meet: A model for RNA splicing in fungal mitochondria. Nature 1982; 300:719-724.

18. Weiss-Brummer B, Holl J, Schweyen RJ, Rodel G, Kaudewitz F. Processing of yeast mitochondrial RNA: Involvement of intramolecular hybrids in splicing of cob intron 4 RNA by mutation and reversion. Cell 1983; 33:195-202.

19. Perea J, Jacq C. Role of the 5' hairpin structure in the splicing accuracy of the fourth intron of the yeast cob-box gene. EMBO J 1986; 4:3281-3288.

20. Been MD, Cech TR. One binding site determines sequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity. Cell 1986; 47:207-216.

21. Waring RB, Towner P, Minter SJ, Davies RW. Splice-site selection by a self-splicing RNA of Tetrahymena. Nature 1986; 321:133-139.

22. Burke JM, Irvine KD, Kaneko KJ, Kerker BJ, Oettgen AB. Role of conserved sequence elements 9L and 2 in self-splicing of the Tetrahymena ribosomal RNA precursor. Cell 1986; 45: 167-176.

23. Williamson CL, Desai NM, Burke JM. Compensatory mutations demonstrate that P8 and P6 are RNA secondary structure elements important for processing of a group I intron. Nucleic Acids Res 1989; 17:675-689.

24. Williamson CL, Tierney WM, Kerker BJ, Burke JM. Site-directed mutagenesis of core sequence elements 9R', 9L, 9R and 2 in self-splicing Tetrahymena pre-rRNA. J. Biol. Chem 1987; 262:14672-14682.

25. Flor PJ, Flanegan JB, Cech TR. A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self-splicing. EMBO J 1989; 8: 3391-3399.

26. Ehrenman K, Schroeder R, Chandry PS, Hall DH, Belfort M. Sequence specificity of the P6 pairing for splicing of the group I td intron of phage T4. Nucleic Acids Res 1989; 17: 9147-9163.

27. Latham JA, Cech TR. Defining the inside and outside of a catalytic RNA molecule. Science 1989; 245:276-282.

28. Celander DW, Cech TR. Visualizing the higher order folding of a catalytic RNA molecule. Science 1991; 251:401-407.

29. Murphy FL, Cech TR. An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme. Biochemistry 1993; 32:5291-5300.

30. Wang Y-H, Murphy FL, Cech TR, Griffith JD. Visualization of a tertiary structural domain of the Tetrahymena group I intron by electron microscopy. J. Mol. Biol 1994; 236:64-71.

31. Laggerbauer B, Murphy FL, Cech TR. Two major tertiary folding transitions of the Tetrahymena catalytic RNA. EMBO J 1994; 13:2669-2676.

32. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot C, Cech TR, Doudna JA. Crystal structure of a group I ribo-zyme domain: Principles of RNA packing. Science 1996; 273: 1678-1685.

33. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Szewc-zak AA, Kundrot CE, Cech TR, Doudna JA. RNA tertiary structure mediation by adenosine platforms. Science 1996; 273:1696-1699.

34. Golden BL, Gooding AR, Podell ER, Cech TR. A preorgan-ized active site in the crystal structure of the Tetrahymena ribozyme. Science 1998; 282:259-264.

35. Wang J-F, Downs WD, Cech TR. Movement of the guide sequence during RNA catalysis by a group I ribozyme. Science 1993; 260:504-508.

36. Downs WD, Cech TR. A tertiary interaction in the Tetrahy-mena intron contributes to selection of the 5' slice site. Genes & Dev 1994; 8:1198-1211.

37. Zaug AJ, Grabowski PJ, Cech TR. Autocatalytic cyclization of an excised intervening sequence RNA is a cleavage-ligation reaction. Nature 1983; 301:578-583.

38. Zaug AJ, Cech TR. The intervening sequence RNA of Tetrahymena is an enzyme. Science 1986; 231:470-475.

39. Cech TR, Herschlag D, Piccirilli JA, Pyle AM. RNA catalysis by a group I ribozyme: Developing a model for transition state stabilization. J. Biol. Chem 1992; 267:17479-17482.

40. Zaug AJ, Been MD, Cech TR. The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature 1986; 324: 429-433.

41. Been MD, Cech TR. One binding site determines sequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity. Cell 1986; 46:207-216.

42. Murphy FL, Cech TR. Alteration of substrate specificity for the endoribonucleolytic cleavage of RNA by the Tetrahymena ribozyme. Proc. Natl. Acad. Sci. USA 1989; 86:9218-9222.

43. Pyle AM, McSwiggen JA, Cech TR. Direct measurement of oligonucleotide substrate binding to wild-type and mutant ri-

bozymes from Tetrahymena. Proc. Natl. Acad. Sci. USA 1990; 87:8187-8191.

Herschlag D, Cech TR. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry 1990; 29:10159-10171. Herschlag D, Cech TR. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site. Biochemistry 1990; 29:10172-10180. Pyle AM, Murphy FL, Cech TR. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature 1992; 358:123-128.

Bevilacqua PC, Kierzek R, Johnson KA, Turner DH. Dynamics of ribozyme binding of substrate revealed by fluorescence-detected stopped-flow methods. Science 1992; 258: 1355-1358.

Strobel SA, Cech TR. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry 1993; 32:13593-13604.

Knitt DS, Narlikar GJ, Herschlag D. Dissection of the role of the conserved G-U pair in group I RNA self-splicing. Biochemistry 1994; 33:13864-13879.

Herschlag D. Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: More isn't always better. Proc. Natl. Acad. Sci. USA 1991; 88: 6921-6925.

Zarrinkar PP, Sullenger BA. Optimizing the substrate specificity of a group I intron ribozyme. Biochemistry 1999; 38: 3426-3432.

Griffin EA, Qin Z, Michels WJ, Pyle AM. Group II intron ribozymes that cleave DNA and RNA linkages with similar efficiency, and lack contacts with substrate 2'-hydroxyl groups. Chem Biol 1995; 2:761-770.

Inoue T, Sullivan FX, Cech TR. Intermolecular exon ligation of the rRNA precursor of Tetrahymena: Oligonucleotides can function as 5' exons. Cell 1985; 43:431-437. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 1983; 35:849-857.

Guerrier-Takada C, Altman S. Catalytic activity of an RNA molecule prepared by transcription in vitro. Science 1984;223: 285-286.

Forester AC, Altman S. External guide sequences for an RNA enzyme. Science 1990; 249:783-786.

Buzayan JM, Gerlach WL, Bruening G. Non-enzymatic cleavage and ligation of RNA complementary to a plant virus satellite RNA. Nature 1986; 323:349-353. Forster AC, Symons RH. Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell 1987; 50:9-16.

Uhlenbeck OC. A small catalytic oligoribonucleotide. Nature 1987; 328:596-600.

Hasseloff J, Gerlach WL. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 1988; 334: 585-591.

Pley HW, Flaherty KM, McKay DB. Three-dimensional structure of a hammerhead ribozyme. Nature 1994; 372:68-74. Scott WG, Finch JT, Klug A. The crystal structure of an all-RNA hammerhead ribozyme: A proposed mechanism for RNA catalytic cleavage. Cell 1995; 81:991-1002. Ruffner DE, Stormo GD, Uhlenbeck OC. Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 1990; 29:10695-10702.

64. Fedor MJ, Uhlenbeck OC. Substrate sequence effects on hammerhead RNA catalytic efficiency. Proc. Natl. Acad. Sci. USA 1990; 87:1668-1672.

65. Gerlach WL, Buzayan JM, Schneider IR, Bruening G. Satellite tobacco ringspot virus RNA: Biological activity of DNA clones and their in vitro transcripts. Virology 1986; 151: 172-185.

66. Haseloff J, Gerlach WL. Sequences required for self-catalyzed cleavage of the satellite RNA of tobacco ringspot virus. Gene 1989; 82:43-52.

67. Feldstein PA, Buzayan JM, Bruening G. Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene 1989; 83:53-61.

68. Hampel A, Tritz R. RNA catalytic properties of the minimum (-)sTRSV sequence. Biochemistry 1989; 28:4929-4933.

69. Hampel A, Tritz R, Hicks M, Cruz P. ''Hairpin'' catalytic RNA model: Evidence for helices and sequence requirements for substrate RNA. Nucleic Acids Res 1990; 18:299-304.

70. Joseph S, Berzal-Herranz A, Chowrira BM, Butcher SE. Substrate selection rules for the hairpin ribozyme determined by in vitro selection, maturation and analysis of mismatched substrates. Genes Dev 1993; 7:130-138.

71. Chowrira BM, Berzal-Herranz A, Burke JM. Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature 1991; 354:320-322.

72. Kuo MY, Sharmeen L, Dinter-Gottlieb G, Taylor J. Characterization of self-cleaving RNA sequences on the genome and antigenome of human hepatitis delta virus. J Virol 1988; 62: 4439-4444.

73. Wu HN, Lin YJ, Lin FP, Makino S, Chang MF, Lai MM. Human hepatitis delta virus RNA subfragments contain an autocleavage activity. Proc. Natl. Acad. Sci. USA 1989; 86: 1831-1835.

74. Perrotta AT, Been MD. The self-cleaving domain from the genomic RNA of hepatitis delta virus: Sequence requirements and the effects of denaturant. Nucleic Acids Res 1990; 18: 6821-6827.

75. Perrotta AT, Been MD. A pseudoknot-like structure required for efficient self-cleavage of hepatitis delta virus RNA. Nature 1991; 350:434-436.

76. Ferre-D'Amare AR, Zhou K, Dounda JA. Crystal structure of a hepatitis delta virus ribozyme. Nature 1998; 395:567-574.

77. Rosenstein SP, Been MD. Self-cleavage of hepatitis delta virus genomic strand RNA is enhanced under partially denaturing conditions. Biochemistry 1990; 29:8011-8016.

78. Branch AD, Robertson HD. Efficient trans cleavage and a common structural motif for the ribozymes of the human hepatitis 8 agent. Proc. Natl. Acad. Sci. USA 1991; 88: 10163-10167.

79. Perotta AT, Been MD. Cleavage of oligoribonucleotides by a ribozyme derived from the hepatitis 8 virus RNA sequence. Biochemistry 1992; 31:16-21.

80. Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 1990; 63:601-608.

81. Yamada O, Yu M, Yee J-K, Kraus G, Looney D, Wong-Staal F. Intracellular immunization of human T cells with a hairpin ribozyme against human immunodeficiency virus type 1. Gene Ther 1994; 1:38-44.

82. Sarver N, Cantin EM, Chang PS, Zaia JA, Ladne PA, Stephens DA, Rossi JJ. Ribozymes as potential anti-HIV agents. Science 1990; 247:1222-1225.

83. Yu M, Poeschla E, Wong-Staal F. Progress towards gene therapy for HIV infection. Gene Ther 1994; 1:13-26.

84. Rossi JJ. Controlled, targeted, intracellular expression of ribo-zymes: Progress and problems. TIBTECH 1995; 13:301-306.

85. Yu M, Ojwang J, Yamada O, Hampel A, Rapapport J, Looney

D, Wong-Staal F. A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 1993; 90:6340-6344.

86. Homman M, Tzortzakaki S, Rittner K, Sczakiel G, Tabler M. Incorporation of the catalytic domain of a hammerhead ribozyme into antisense RNA enhances its inhibitory effect on the replication of human immunodeficiency virus type 1. Nucleic Acids Res 1993; 21:2809-2814.

87. Yamada O, Kraus G, Leavitt MC, Yu M, Wong-Staal F. Activity and cleavage site specificity of an anti-HIV-1 hairpin ribozyme in human T cells. Virology 1994; 205:121-126.

88. Zhou C, Bahner IC, Larson GP, Zaia JA, Rossi JJ, Kohn DB. Inhibition of HIV-1 in human T-lymphocytes by retrovirally transduced anti-tat and rev hammerhead ribozymes. Gene 1994; 149:33-39.

89. Leavitt MC, Yu M, Yamada O, Kraus G, Looney D, Poeschla

E, Wong-Staal F. Transfer of an anti-HIV-1 ribozyme gene into primary human lymphocytes. Hum Gene Ther 1994; 5: 1115-1120.

90. Yu M, Leavitt MC, Maruyama M, Yamada O, Young D, Ho AD, Wond-Staal F. Intracellular immunization of human fetal cord blood stem/progenitor cells with a ribozyme against human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 1995; 92:669-703.

91. Wong-Staal F, Poeschla EM, Looney DJ. A controlled, phase 1 clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphocytes transduced with a ribozyme that cleaves HIV-1 RNA. Hum Gene Ther 1998; 9: 2407-2425.

92. Law P, Lane TA, Gervaix A, Looney D, Schwarz L, Young D, Ramos S, Wong-Staal F, Recktenwald D, Ho AD. Mobilization of peripheral blood progenitor cells for human immunodeficiency virus-infected individuals. Exp. Hematol 1999; 27: 147-154.

93. Amado RG, Mitsuyasu RT, Symonds G, Rosenblatt JD, Zack J, Sun L-Q, Miller M, Ely J, Gerlach W. A phase I trial of autologous CD34 + hematopoietic progenitor cells transduced with an anti-HIV ribozyme. Hum Gene Ther 1999; 10: 2255-2270.

94. Macejack DG, Jensen KL, Jamison SF, Domenico K, Roberts EC, Chaudhary N, Von Carlowitz I, Bellon L, Tong MJ, Conrad A, Pavco PA, Blatt LM. Inhibition of hepatitis C virus (HCV)- RNA-dependent translation and replication of a chi-meric HCV poliovirus using synthetic stabilized ribozymes. Hepatology 2000; 31:769-776.

95. Pavco PA, Bouhana KS, Gallegos AM, Agrawal A, Blanchard KS, Grimm SL, Jensen KL, Andrews LE, Wincott FE, Pitot PA, Tressler RJ, Cushman C, Reynolds MA, Parry TJ. Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin Cancer Res 2000; 6:2094-2113.

96. Bos JL. Ras oncogene in human cancer: a review. Cancer Res 1989; 49:4682-4689.

97. Koizumi M, Kamiya H, Ohtsuka E. Ribozymes designed to inhibit transformation of NIH3T3 cells by the activated c-Ha-ras gene. Gene 1992; 117:179-184.

98. Kashani-Sabet M, Funato T, Tone T, Jiao L, Wang W, Yoshida E, Kashfinn BI, Shitara T, Wu AM, Moreno JG, Traweek ST, Ahlering TE, Scanlon KJ. Reversal of the malignant phenotype by an anti-ras ribozyme. Antisense Res Dev 1992; 2:3-15.

99. Wright L, Wilson SB, Milliken S, Biggs J, Kearney P. Ribo-zyme-mediated cleavage of the bcr/abl transcript expressed in chronic myeloid leukemia. Exp. Hematol 1993; 21: 1714-1718.

100. Shore SK, Nabissa PM, Reddy EP. Ribozyme-mediated cleavage of the BRCABL oncogene transcript: In vitro cleavage of RNA and in vivo loss of P210 protein kinase activity. Oncogene 1993; 8:3183-3188.

101. Lange W, Cantin EM, Finke J, Dolken G. In vitro and in vivo effects of synthetic ribozymes targeted against BCR/ABL mRNA. Leukemia 1993; 7:1786-1794.

102. Snyder DS, Wu Y, Wang JL, Rossi JJ, Swiderski P, Kaplan BE, Forman SJ. Ribozyme-mediated inhibition ofbcr-abl gene expression in a Philadelphia chromosome-positive cell line. Blood 1993; 82:600-605.

103. Sullenger BA, Cech TR. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature 1994; 371: 619-622.

104. Jones JJ, Lee S-W, Sullenger BA. Tagging-ribozyme reaction sites to follow trans-splicing in mammalian cells. Nat Med 1996; 2:643-648.

105. Jones JJ, Sullenger BA. Evaluating and enhancing ribozyme reaction efficiency in mammalian cells. Nat Biotech 1997; 15: 902-905.

106. Phylactou LA, Darrah C, Wood MJ. Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nat Genetics 1998; 18: 378-381.

107. Lan N, Howery RP, Lee S-W, Smith CA, Sullenger BA. Ribo-zyme-mediated repair of sickle ß-globin mRNAs in erythrocyte precursors. Science 1998; 280:1593-1596.

108. Watanabe T, Sullenger BA. Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc. Natl. Acad. Sci. USA 2000; 97: 8490-8494.

109. Rogers CS, Vanoye CG, Sullenger BA, George AL. Functional repair of a mutant chloride channel using a trans-splicing ribozyme. J Clin. Invest 2002; 110:1783-1789.

110. Kohler U, Ayre BG, Goodman HM, Haseloff J. Trans-splicing ribozymes for targeted gene delivery. J Mol Biol 1999; 285: 1935-1950.

111. Ayre BG, Kohler U, Goodman HM, Haseloff J. Design of highly specific cytotoxins by using trans-splicing ribozymes. Proc. Natl. Acad. Sci. USA 1999; 96:3507-3512.

112. Ryu K-J, Kim J-H, Lee S-W. Ribozyme-mediated selective induction of new gene activity in hepatitis C virus internal ribosome entry site-expressing cells by targeted trans-splicing. Mol Ther 2003; 7:386-395.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment