1. Blaese RM, Culver KW, Miller AD, et al. T lymphocyte-directed gene therapy for ADA- SCID: Initial trial results after 4 years. Science 1995; 270:475-480.

2. van Deutekom JC, Hoffman EP, Huard J. Muscle maturation: Implications for gene therapy. Mol Med Today 1998; 4: 214-220.

3. Marshall DJ, Leiden JM. Recent advances in skeletal-muscle-based gene therapy. Curr Opin Genet Dev 1998; 8:360-365.

4. Kafri T, Blomer U, Peterson DA, et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 1997; 17:314-317.

5. Kessler PD, Podsakoff GM, Chen X, et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA 1996; 93:14082-14087.

6. Xiao X, Li J, Samulski RJ. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associ-ated virus vector. J Virol 1996; 70:8098-8108.

7. Snyder RO, Spratt SK, Lagarde C, et al. Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice. Hum Gene Ther 1997; 8:1891-1900.

8. Fisher KJ, Jooss K, Alston J, et al. Recombinant adeno-associ-ated virus for muscle directed gene therapy. Nat Med 1997; 3:306-312.

9. Clark KR, Sferra TJ, Johnson PR. Recombinant adeno-associ-ated viral vectors mediate long-term transgene expression in muscle. Hum Gene Ther 1997; 8:659-669.

10. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247:1465-1468.

11. Wolff JA, Ludtke JJ, Acsadi G, et al. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet 1992; 1:363-369.

12. Lin H, Parmacek MS, Morle G, et al. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 1990; 82:2217-2221.

13. Kitsis RN, Buttrick PM, McNally EM, et al. Hormonal modulation of a gene injected into rat heart in vivo. Proc Natl Acad Sci USA 1991; 88:4138-4142.

14. Buttrick PM, Kass A, Kitsis RN, et al. Behavior of genes directly injected into the rat heart in vivo. Circ Res 1992; 70: 193-198.

15. Choate KA, Khavari PA. Direct cutaneous gene delivery in a human genetic skin disease. Hum Gene Ther 1997; 8: 1659-1665.

16. Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein [see comments]. Science 1993; 259:1745-1749.

17. Manickan E, Rouse RJ, Yu Z, et al. Genetic immunization against herpes simplex virus. Protection is mediated by CD4 + T lymphocytes. J Immunol 1995; 155:259-265.

18. Wang B, Ugen KE, Srikantan V, et al. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1993; 90:4156-4160.

19. Davis HL, Michel ML, Whalen RG. DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Hum Mol Genet 1993; 2:1847-1851.

20. Hartikka J, Sawdey M, Cornefert-Jensen F, et al. An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum Gene Ther 1996; 7:1205-1217.

21. Aihara H, Miyazaki J. Gene transfer into muscle by electropor-ation in vivo. Nat Biotechnol 1998; 16:867-870.

22. Mir LM, Bureau MF, Rangara R, et al. Long-term, high level in vivo gene expression after electric pulse-mediated gene transfer into skeletal muscle. C R Acad Sci III 1998; 321: 893-899.

23. Blau HM, Springer ML. Muscle-mediated gene therapy. N Engl J Med 1995; 333:1554-1556.

24. Hughes SM, Blau HM. Migration of myoblasts across basal lamina during skeletal muscle development. Nature 1990; 345: 350-353.

25. Hughes SM, Blau HM. Muscle fiber pattern is independent of cell lineage in postnatal rodent development. Cell 1992; 68: 659-671.

26. Springer ML, Rando TA, Blau HM. Gene delivery to muscle. In: Boyle AL, Ed. Current Protocols in Human Genetics. Vol. Unit 13.4. New York: John Wiley & Sons, 1997.

27. al-Hendy A, Hortelano G, Tannenbaum GS, et al. Correction of the growth defect in dwarf mice with nonautologous micro-encapsulated myoblasts—An alternate approach to somatic gene therapy. Hum Gene Ther 1995; 6:165-175.

28. Hortelano G, al-Hendy A, Ofosu FA, et al. Delivery of human factor IX in mice by encapsulated recombinant myoblasts: A novel approach towards allogeneic gene therapy of hemophilia B. Blood 1996; 87:5095-5103.

29. Springer ML, Hortelano G, Bouley DM, et al. Induction of angiogenesis by implantation of encapsulated primary my-oblasts expressing vascular endothelial growth factor. J Gene Med 2000; 2:279-288.

30. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961; 9:493-495.

31. Campion DR. The muscle satellite cell: A review. Int Rev Cytol 1984; 87:225-251.

32. Barany M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 1967; 50:Suppl:197-218.

33. Schmalbruch H. Skeletal muscle. New York: Springer-Verlag, 1985.

34. Hughes SM, Cho M, Karsch-Mizrachi I, et al. Three slow myosin heavy chains sequentially expressed in developing mammalian skeletal muscle. Dev Biol 1993; 158:183-199.

35. Cho M, Webster SG, Blau HM. Evidence for myoblast-extrin-sic regulation of slow myosin heavy chain expression during muscle fiber formation in embryonic development. J Cell Biol 1993; 121:795-810.

36. Partridge TA, Grounds M, Sloper JC. Evidence of fusion between host and donor myoblasts in skeletal muscle grafts. Nature 1978; 273:306-308.

37. Watt DJ, Morgan JE, Clifford MA, et al. The movement of muscle precursor cells between adjacent regenerating muscles in the mouse. Anat Embryol 1987; 175:527-536.

38. Watt DJ, Lambert K, Morgan JE, et al. Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse. J Neurol Sci 1982; 57:319-331.

39. Watt DJ, Morgan JE, Partridge TA. Use of mononuclear precursor cells to insert allogeneic genes into growing mouse muscles. Muscle Nerve 1984; 7:741-750.

40. Morgan JE, Watt DJ, Sloper JC, et al. Partial correction of an inherited biochemical defect of skeletal muscle by grafts of normal muscle precursor cells. J Neurol Sci 1988; 86: 137-147.

41. Partridge TA, Morgan JE, Coulton GR, et al. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 1989; 337:176-179.

42. Charlton CA, Mohler WA, Radice GL, et al. Fusion competence of myoblasts rendered genetically null for N-cadherin in culture. J Cell Biol 1997; 138:331-336.

43. Yang JT, Rando TA, Mohler WA, et al. Genetic analysis of alpha 4 integrin functions in the development of mouse skeletal muscle. J Cell Biol 1996; 135:829-835.

44. Rando TA, Blau HM. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 1994; 125:1275-1287.

45. Webster C, Blau HM. Accelerated age-related decline in repli-cative life-span of Duchenne muscular dystrophy myoblasts: Implications for cell and gene therapy. Somat Cell Mol Genet 1990; 16:557-565.

46. Webster C, Pavlath GK, Parks DR, et al. Isolation of human myoblasts with the fluorescence-activated cell sorter. Exp Cell Res 1988; 174:252-265.

47. Blau HM, Webster C. Isolation and characterization of human muscle cells. Proc Natl Acad Sci USA 1981; 78:5623-5627.

48. Blanco-Bose WE, Yao CC, Kramer RH, et al. Purification of mouse primary myoblasts based on alpha 7 integrin expression. Exp Cell Res 2001; 265:212-220.

49. Kaufman SJ, Foster RF. Replicating myoblasts express a muscle-specific phenotype. Proc Natl Acad Sci USA 1988; 85: 9606-9610.

50. Springer ML, Blau HM. High-efficiency retroviral infection of primary myoblasts. Somat Cell Mol Genet 1997; 23:203-209.

51. Wang JM, Zheng H, Blaivas M, et al. Persistent systemic production of human factor IX in mice by skeletal myoblast-me-diated gene transfer: Feasibility of repeat application to obtain therapeutic levels. Blood 1997; 90:1075-1082.

52. Barr E, Leiden JM. Systemic delivery of recombinant proteins by genetically modified myoblasts. Science 1991; 254: 1507-1509.

53. Dhawan J, Pan LC, Pavlath GK, et al. Systemic delivery of human growth hormone by injection of genetically engineered myoblasts. Science 1991; 254:1509-1512.

54. Peeters S, Friesen HG. A growth hormone binding factor in the serum of pregnant mice. Endocrinology 1977; 101: 1164-1183.

55. Yao SN, Kurachi K. Expression of human factor IX in mice after injection of genetically modified myoblasts. Proc Natl Acad Sci USA 1992; 89:3357-3361.

56. Yao SN, Smith KJ, Kurachi K. Primary myoblast-mediated gene transfer: Persistent expression of human factor IX in mice. Gene Ther 1994; 1:99-107.

57. Dai Y, Roman M, Naviaux RK, et al. Gene therapy via primary myoblasts: Long-term expression of factor IX protein following transplantation in vivo. Proc Natl Acad Sci USA 1992; 89:10892-10895.

58. Roman M, Axelrod JH, Dai Y, et al. Circulating human or canine factor IX from retrovirally transduced primary my-oblasts and established myoblast cell lines grafted into murine skeletal muscle. Somat Cell Mol Genet 1992; 18:247-258.

Hoffman EP, Brown RH, Kunkel LM. Dystrophin: The protein product of the Duchenne muscular dystrophy locus. Cell 1987; 51:919-928.

Morgan JE, Hoffman EP, Partridge TA. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse. J Cell Biol 1990; 111: 2437-2449.

Law PK, Bertoiini TE, Goodwin TG, et al. Dystrophin production induced by myoblast transfer therapy in Duchenne muscular dystrophy. Lancet 1990; 336:114-115. Gussoni E, Pavlath GK, Lanctot AM, et al. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 1992; 356:435-438. Huard J, Bouchard JP, Roy R, et al. Human myoblast transplantation: Preliminary results of 4 cases. Muscle Nerve 1992; 15:550-560.

Karpati G, Ajdukovic D, Arnold D, et al. Myoblast transfer in Duchenne muscular dystrophy. Ann Neurol 1993; 34:8-17. Mendell JR, Kissel JT, Amato Aa, et al. Myoblast transfer in the treatment of Duchenne's muscular dystrophy. N Engl J Med 1995; 333:832-838.

Morandi L, Bernasconi P, Gebbia M, et al. Lack of mRNA and dystrophin expression in DMD patients three months after myoblast transfer. Neuromuscul Disord 1995; 5:291-295. Miller RG, Sharma KR, Pavlath GK, et al. Myoblast implantation in Duchenne muscular dystrophy: The San Francisco study. Muscle Nerve 1997; 20:469-478. Gussoni E, Wang Y, Fraefel C, et al. A method to codetect introduced genes and their products in gene therapy protocols. Nat Biotechnol 1996; 14:1012-1016. Gussoni E, Blau HM, Kunkel LM. The fate of individual my-oblasts after transplantation into muscles of DMD patients. Nat Med 1997; 3:970-977.

Rando TA, Pavlath GK, Blau HM. The fate of myoblasts following transplantation into mature muscle. Exp Cell Res 1995; 220:383-389.

Neumeyer AM, DiGregorio DM, Brown RH. Arterial delivery of myoblasts to skeletal muscle. Neurology 1992; 42: 2258-2262.

Ragot T, Vincent N, Chafey P, et al. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 1993; 361:647-650. Kochanek S, Clemens PR, Mitani K, et al. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci USA 1996; 93: 5731-5736.

Kumar-Singh R, Chamberlain JS. Encapsidated adenovirus minichromosomes allow delivery and expression of a 14 kb dystrophin cDNA to muscle cells. Hum Mol Genet 1996; 5: 913-921.

Tinsley J, Deconinck N, Fisher R, et al. Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 1998; 4:1441-1444.

Dhawan J, Rando TA, Elson SE, et al. Myoblast-mediated expression of colony stimulating factor-1 (CSF-1) in the cyto-kine-deficient op/op mouse. Somat Cell Mol Genet 1996; 22: 363-381.

Naffakh N, Pinset C, Montarras D, et al. Long-term secretion of therapeutic proteins from genetically modified skeletal muscles. Hum Gene Ther 1996; 7:11-21.

Hamamori Y, Samal B, Tian J, et al. Persistent erythropoiesis by myoblast transfer of erythropoietin cDNA. Hum Gene Ther 1994; 5:1349-1356.

Hamamori Y, Samal B, Tian J, et al. Myoblast transfer of human erythropoietin gene in a mouse model of renal failure. J Clin Invest 1995; 95:1808-1813.

80. Svensson EC, Tripathy SK, Leiden JM. Muscle-based gene therapy: Realistic possibilities for the future. Mol Med Today 1996; 2:166-172.

81. Pfeffer S. Targeting of proteins to the lysosome. Curr Top Microbiol Immunol 1991; 170:43-63.

82. Chuah MK, Collen D, VandenDriessche T. Gene therapy for hemophilia: Hopes and hurdles. Crit Rev Oncol Hematol 1998; 28:153-171.

83. Hedner U, Davie E. Introduction to homeostasis and the vitamin K-dependent coagulation factors. In: Scriver C, Ed. The metabolic basis of inherited disease. Vol. 2. New York: McGraw-Hill, 1989:2107-2134.

84. Wang L, Zoppe M, Hackeng TM, et al. A factor IX-deficient mouse model for hemophilia B gene therapy. Proc Natl Acad Sci USA 1997; 94:11563-11566.

85. Evans RW. Recombinant human erythropoietin and the quality of life of end-stage renal disease patients: A comparative analysis. Am J Kidney Dis 1991; 18:62-70.

86. Naffakh N, Danos O. Gene transfer for erythropoiesis enhancement. Mol Med Today 1996; 2:343-348.

87. Koury MJ, Bondurant MC. The molecular mechanism of erythropoietin action. Eur J Biochem 1992; 210:649-663.

88. Lobb RR, Key ME, Alderman EM, et al. Partial purification and characterization of a vascular permeability factor secreted by a human colon adenocarcinoma cell line. Int J Cancer 1985; 36:473-478.

89. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothe-lial growth factor is a secreted angiogenic mitogen. Science 1989; 246:1306-1309.

90. Plouet J, Schilling J, Gospodarowicz D. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J 1989; 8:3801-3806.

91. Senger DR, Connolly DT, Van de Water L, et al. Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res 1990; 50: 1774-1778.

92. Conn G, Soderman DD, Schaeffer MT, et al. Purification of a glycoprotein vascular endothelial cell mitogen from a rat glioma-derived cell line. Proc Natl Acad Sci USA 1990; 87: 1323-1327.

93. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353-364.

94. Pardanaud L, Yassine F, Dieterlen-Lievre F. Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 1989; 105:473-485.

95. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol 1995; 11:73-91.

96. Takeshita S, Pu LQ, Stein LA, et al. Intramuscular administration of vascular endothelial growth factor induces dose-dependent collateral artery augmentation in a rabbit model of chronic limb ischemia. Circulation 1994; 90:II228-234.

97. Takeshita S, Zheng LP, Brogi E, et al. Therapeutic angiogene-sis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 1994; 93:662-670.

98. Bauters C, Asahara T, Zheng LP, et al. Site-specific therapeutic angiogenesis after systemic administration of vascular en-dothelial growth factor. J Vasc Surg 1995; 21:314-324.

99. Hariawala MD, Horowitz JR, Esakof D, et al. VEGF improves myocardial blood flow but produces EDRF-mediated hypotension in porcine hearts. J Surg Res 1996; 63:77-82.

100. Horowitz JR, Rivard A, van der Zee R, et al. Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium. Arterioscler Thromb Vasc Biol 1997; 17:2793-2800.

101. Mesri EA, Federoff HJ, Brownlee M. Expression of vascular endothelial growth factor from a defective herpes simplex virus type 1 amplicon vector induces angiogenesis in mice. Circ Res 1995; 76:161-167.

102. Muhlhauser J, Merrill MJ, Pili R, et al. VEGF165 expressed by a replication-deficient recombinant adenovirus vector induces angiogenesis in vivo. Circ Res 1995; 77:1077-1086.

103. Magovern CJ, Mack CA, Zhang J, et al. Regional angiogenesis induced in nonischemic tissue by an adenoviral vector expressing vascular endothelial growth factor. Hum Gene Ther 1997; 8:215-227.

104. Isner JM, Pieczek A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 1996; 348:370-374.

105. Takeshita S, Weir L, Chen D, et al. Therapeutic angiogenesis following arterial gene transfer of vascular endothelial growth factor in a rabbit model of hindlimb ischemia. Biochem Bio-phys Res Commun 1996; 227:628-635.

106. Tsurumi Y, Takeshita S, Chen D, et al. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 1996; 94:3281-3290.

107. Mack CA, Patel SR, Schwarz EA, et al. Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 1998; 115: 176-167.

108. Vale PR, Losordo DW, Milliken CE, et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 2001; 103: 2138-2143.

109. Rosengart TK, Lee LY, Patel SR, et al. Angiogenesis gene therapy: Phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999; 100:468-474.

110. Springer ML, Chen AS, Kraft PE, et al. VEGF gene delivery to muscle: Potential role for vasculogenesis in adults. Mol Cell 1998; 2:549-558.

111. Lee RJ, Springer ML, Blanco-Bose WE, et al. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 2000; 102:898-901.

112. Gimbrone MA, Leapman SB, Cotran RS, et al. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 1972; 136:261-276.

113. Brem S, Brem H, Folkman J, et al. Prolonged tumor dormancy by prevention of neovascularization in the vitreous. Cancer Res 1976; 36:2807-2812.

114. Ehrlich P, Apolant H. Beobachtungen uber maligne Mausetu-morem. Berl. klin. Wschr 1905; 42:871-874.

115. Gorelik E. Concomitant tumor immunity and the resistance to a second tumor challenge. Adv Cancer Res 1983; 39:71-120.

116. Ruggiero RA, Bustuoabad OD, Bonfil RD, et al. ''Concomitant immunity'' in murine tumours of non-detectable immuno-genicity. Br J Cancer 1985; 51:37-48.

117. Gershon RK, Carter RL, Kondo K. Immunologic defenses against metastases: Impairment by excision of an allotrans-planted lymphoma. Science 1968; 159:646-648.

118. O'Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315-328.

119. O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88:277-285.

120. Tanaka T, Cao Y, Folkman J, et al. Viral vector-targeted anti-angiogenic gene therapy utilizing an angiostatin complementary DNA. Cancer Res 1998; 58:3362-3369.

121. Rossi FM, Blau HM. Recent advances in inducible gene expression systems. Curr Opin Biotechnol 1998; 9:451-456.

122. Harvey DM, Caskey CT. Inducible control of gene expression: Prospects for gene therapy. Curr Opin Chem Biol 1998; 2: 512-518.

123. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992; 89:5547-5551.

124. Gossen M, Freundlieb S, Bender G, et al. Transcriptional activation by tetracyclines in mammalian cells. Science 1995; 268: 1766-1769.

125. Mayford M, Bach ME, Huang YY, et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 1996; 274:1678-1683.

126. Kistner A, Gossen M, Zimmermann F, et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci USA 1996; 93:10933-10938.

127. Bello B, Resendez-Perez D, Gehring WJ. Spatial and temporal targeting of gene expression in Drosophila by means of a tetra-cycline-dependent transactivator system. Development 1998; 125:2193-2202.

128. Kringstein AM, Rossi FM, Hofmann A, et al. Graded tran-scriptional response to different concentrations of a single transactivator. Proc Natl Acad Sci USA 1998; 95: 13670-13675.

129. Garrick D, Fiering S, Martin DI, et al. Repeat-induced gene silencing in mammals. Nat Genet 1998; 18:56-59.

130. Hofmann A, Nolan GP, Blau HM. Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc Natl Acad Sci USA 1996; 93:5185-5190.

131. Hwang JJ, Scuric Z, Anderson WF. Novel retroviral vector transferring a suicide gene and a selectable marker gene with enhanced gene expression by using a tetracycline-responsive expression system. J Virol 1996; 70:8138-8141.

132. Lindemann D, Patriquin E, Feng S, et al. Versatile retrovirus vector systems for regulated gene expression in vitro and in vivo. Mol Med 1997; 3:466-476.

133. Paulus W, Baur I, Boyce FM, et al. Self-contained, tetracy-cline-regulated retroviral vector system for gene delivery to mammalian cells. J Virol 1996; 70:62-67.

134. Hoshimaru M, Ray J, Sah DW, et al. Differentiation of the immortalized adult neuronal progenitor cell line HC2S2 into neurons by regulatable suppression of the v-myc oncogene. Proc Natl Acad Sci USA 1996; 93:1518-1523.

135. Sah DW, Ray J, Gage FH. Bipotent progenitor cell lines from the human CNS. Nat Biotechnol 1997; 15:574-580.

136. Bohl D, Naffakh N, Heard JM. Long-term control of erythro-poietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nat Med 1997; 3:299-305.

137. Deuschle U, Meyer WK, Thiesen HJ. Tetracycline-reversible silencing of eukaryotic promoters. Mol Cell Biol 1995; 15: 1907-1914.

138. Blau HM, Rossi FM. Tet B or not tet B: Advances in tetracy-cline-inducible gene expression. Proc Natl Acad Sci USA 1999; 96:797-799.

139. Hillen W, Berens C. Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu Rev Microbiol 1994; 48:345-369.

140. Kisker C, Hinrichs W, Tovar K, et al. The complex formed between Tet repressor and tetracycline-Mg2 + reveals mechanism of antibiotic resistance. J Mol Biol 1995; 247:260-280.

141. Schnappinger D, Schubert P, Pfleiderer K, et al. Determinants of protein-protein recognition by four helix bundles: Changing the dimerization specificity of Tet repressor. EMBO J 1998; 17:535-543.

142. Rossi FM, Guicherit OM, Spicher A, et al. Tetracycline-regu-latable factors with distinct dimerization domains allow reversible growth inhibition by p16. Nat Genet 1998; 20:389-393.

143. Baron U, Schnappinger D, Helbl V, et al. Generation of conditional mutants in higher eukaryotes by switching between the expression of two genes. Proc Natl Acad Sci USA 1999; 96: 1013-1018.

144. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279:1528-1530.

145. Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401:390-394.

146. LaBarge MA, Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucle-ate muscle fiber in response to injury. Cell in press.

147. Partridge T. The 'fantastic voyage' of muscle progenitor cells. Nat Med 1998; 4:554-555.

148. Yoshida N, Yoshida S, Koishi K, et al. Cell heterogeneity upon myogenic differentiation: Down-regulation of MyoD and Myf-5 generates 'reservecells'. J Cell Sci 1998; 111:769-779.

149. Baroffio A, Hamann M, Bernheim L, et al. Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells. Differentiation 1996; 60:47-57.

150. Beauchamp JR, Morgan JE, Pagel CN, et al. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 1999; 144:1113-1122.

151. Chang PL. Microencapsulation—An alternative approach to gene therapy. Transfus Sci 1996; 17:35-43.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment