6. Zabner J, Freimuth P, Puga A, Fabrega A, Welsh MJ. Lack of high affinity fiber receptor activity explains the resistance of 22. ciliated airway epithelia to adenovirus infection. J Clin Invest 1997; 100(5):1144-1149.

7. Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ, Zabner J. Basolateral localization of fiber receptors limits 23. adenovirus infection from the apical surface of airway epithelia. J Biol Chem 1999; 274(15):10219-10226.

8. Kaner RJ, Worgall S, Leopold PL, Stolze E, Milano E, Hidaka C,etal. Modification of the genetic program of human alveolar 24. macrophages by adenovirus vectors in vitro is feasible but inefficient, limited in part by the low level of expression of the coxsackie/adenovirus receptor. Am J Respir Cell Mol Biol 1999; 20(3):361-370. 25.

9. Wan YY, Leon RP, Marks R, Cham CM, Schaack J, Gajewski TF, et al. Transgenic expression of the coxsackie/adenovirus receptor enables adenoviral-mediated gene delivery in naive T cells. Proc Natl Acad Sci USA 2000; 97(25):13784-13789.

10. Li Y, Pong RC, Bergelson JM, Hall MC, Sagalowsky AI, 26. Tseng CP, et al. Loss of adenoviral receptor expression in human bladder cancer cells: A potential impact on the efficacy of gene therapy. Cancer Res 1999; 59(2):325-330.

11. Miller CR, Buchsbaum DJ, Reynolds PN, Douglas JT, Gilles- 27. pie GY, Mayo MS, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: Targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 1998; 28. 58(24):5738-5748.

12. Fechner H, Wang X, Wang H, Jansen A, Pauschinger M, Scherubl H, et al. Trans-complementation of vector replication versus Coxsackie-adenovirus-receptor overexpression to im- 29. prove transgene expression in poorly permissive cancer cells. Gene Ther 2000; 7(22):1954-1968.

13. Cripe TP, Dunphy EJ, Holub AD, Saini A, Vasi NH, Mahller YY, et al. Fiber knob modifications overcome low, heteroge- 30. neous expression of the coxsackie-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhab-domyosarcoma cells. Cancer Res 2001; 61:2953-2960. 31.

14. Okegawa T, Li Y, Pong RC, Bergelson JM, Zhou J, Hsieh JT. The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res 2000; 60(18):5031-5036.

15. Okegawa T, Pong RC, Li Y, Bergelson JM, Sagalowsky AI, 32. Hsieh JT. The Mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: A functional analysis of CAR protein structure. Cancer Res 2001; 61(17):6592-6600.

16. Cohen CJ, ShiehJT, Pickles RJ, Okegawa T, Hsieh JT,Bergel- 33. son JM. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A 2001; 98(26):15191-15196.

17. Shayakhmetov DM, Li ZY, Ni S, Lieber A. Targeting of ade-novirus vectors to tumor cells does not enable efficient trans- 34. duction of breast cancer metastases. Cancer Res 2002; 62(4): 1063-1068.

18. Hemminki A, Alvarez RD. Adenoviruses in oncology: A viable option. BioDrugs 2002; 16(2):77-87.

19. Bauerschmitz GJ, Barker SD, Hemminki A. Adenoviral gene 35. therapy for cancer: From vectors to targeted and replication competent agent. Int J Oncol 2002; 21:1161-1174.

20. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internali- 36. zation but not virus attachment. Cell 1993; 73(2):309-319.

Li E, Brown SL, Stupack DG, Puente XS, Cheresh DA, Nem-erow GR. Integrin alphavbeta1 is an adenovirus coreceptor. J Virol 2001; 75(11):5405-5409.

Dechecchi MC, Melotti P, Bonizzato A, Santacatterina M, Chilosi M, Cabrini G. Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 2001; 75(18):8772-8780. Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA. Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblas-toid cells. EMBO J 1997; 16(9):2294-2306. Smith T, Idamakanti N, Kylefjord H, Rollence M, King L, Kaloss M, et al. In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor. Mol Ther 2002; 5(6):770-779.

Wood M, Perrotte P, Onishi E, Harper ME, Dinney C, Pagliaro L, et al. Biodistribution of an adenoviral vector carrying the luciferase reporter gene following intravesical or intravenous administration to a mouse. Cancer Gene Ther 1999; 6(4): 367-372.

Reynolds P, Dmitriev I, Curiel D. Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector. Gene Ther 1999; 6(7):1336-1339. Kanerva A, Wang M, Bauerschmitz GJ, Lam JT, Desmond RA, Bhoola SM, et al. Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses. Mol Ther 2002; 5(6):695-704.

Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM, et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther 2001; 3(1):28-35.

Worgall S, Wolff G, Falck-Pedersen E, Crystal RG. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther 1997; 8(1):37-44.

Alemany R, Suzuki K, Curiel DT. Blood clearance rates of adenovirus type 5 in mice. J Gen Virol 2000; 81(Pt 11): 2605-2609.

Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72(12):9706-9713. Kelly FJ, Miller CR, Buchsbaum DJ, Gomez-Navarro J, Barnes MN, Alvarez RD, et al. Selectivity of TAG-72 targeted adenovirus gene transfer to primary ovarian carcinoma cells versus autologous mesothelial cells in vitro. Clin Cancer Res 2000; 6:4323-4333.

Vanderkwaak TJ, Wang M, Gomez-Navarro J, Rancourt C, Dmitriev I, Krasnykh V, et al. An advanced generation of adenoviral vectors selectively enhances gene transfer for ovarian cancer gene therapy approaches. Gynecol Oncol 1999; 74(2):227-234.

Khuu H, Conner M, Vanderkwaak T, Shultz J, Gomez-Navarro J, Alvarez R, et al. Detection of coxsackie-adenovirus receptor (CAR) immunoreactivity in ovarian tumors of epithelial derivation. Appl Immunohistochem Molec Morphol 1999; 7(4):266-270.

Kasono K, Blackwell JL, Douglas JT, Dmitriev I, Strong TV, Reynolds P, et al. Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector. Clin Cancer Res 1999; 5(9):2571-2579.

Heinicke T, Hemmi S, Mauer D, Sauerbruch T, Caselman WH. Transduction efficiency of adenoviral vectors in colorectal cancer cells is determined by the presence of the coxsackie adenovirus receptor. Mol Ther 2000; 1(5):S126. Anders M, Christian C, Warren R, Balmain A, Bissell MJ, McCormick F, et al. Expression and regulation of the coxs-ackie- and adenovirus receptor (CAR) in premalignant lesions and advanced neoplasms. Cancer Res 2003; 63(9):2088-95. Einfeld DA, Schroeder R, Roelvink PW, Lizonova A, King CR, Kovesdi I, et al. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol 2001; 75(23):11284-11291. Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M, Curiel DT. Targeted gene delivery by tropism-modified adenoviral vectors. Nature Biotech 1996; 14(11):1574-1548. Rogers BE, Douglas JT, Ahlem C, Buchsbaum DJ, Frincke J, Curiel DT. Use of a novel cross-linking method to modify adenovirus tropism. Gene Ther 1997; 4(12):1387-1392. Rogers BE, Douglas JT, Sosnowski BA, Wenbin Y, Pierce G, Buchsbaum D, et al. Enhanced in vivo gene delivery to human ovarian cancer xenografts utilizing a tropism modified adeno-virus vector. Tumor Targeting 1998; 3:25-31. Goldman CK, Rogers BE, Douglas JT, Sosnowski BA, Ying W, Siegal GP, et al. Targeted gene delivery to Kaposi's sarcoma cells via the fibroblast growth factor receptor. Cancer Res 1997; 57(8):1447-1451.

Rancourt C, Rogers BE, Sosnowski BA, Wang M, Piche A, Pierce GF, et al. Basic fibroblast growth factor enhancement of adenovirus-mediated delivery of the herpes simplex virus thymidine kinase gene results in augmented therapeutic benefit in a murine model of ovarian cancer. Clin Cancer Res 1998; 4(10):2455-2461.

Gu DL, Gonzalez AM, Printz MA, Doukas J, Ying W, D'Andrea M, et al. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: Evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Res 1999; 59(11):2608-2614.

Printz MA, Gonzalez AM, Cunningham M, Gu DL, Ong M, Pierce GF, et al. Fibroblast growth factor 2-retargeted adenovi-ral vectors exhibit a modified biolocalization pattern and display reduced toxicity relative to native adenoviral vectors. Hum Gene Ther 2000; 11(1):191-204. Haisma HJ, Pinedo HM, Rijswijk A, der Meulen-Muileman I, Sosnowski BA, Ying W, et al. Tumor-specific gene transfer via an adenoviral vector targeted to the pancarcinoma antigen EpCAM. Gene Ther 1999; 6(8):1469-1474. Haisma HJ, Grill J, Curiel DT, Hoogeland S, van Beusechem VW, Pinedo HM, et al. Targeting of adenoviral vectors through a bispecific single-chain antibody. Cancer Gene Ther 2000; 7(6):901-904.

Reynolds PN, Zinn KR, Gavrilyuk VD, Balyasnikova IV, Rogers BE, Buchsbaum DJ, et al. A targetable, injectable adenovi-ral vector for selective gene delivery to pulmonary endothe-lium in vivo. Mol Ther 2000; 2(6):562-578. Tillman BW, Gruijl TD, Luykx-de Bakker SA, Scheper RJ, Pinedo HM, Curiel TJ, et al. Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J Immunol 1999; 162(11):6378-6383. Pereboev AV, Asiedu CK, Kawakami Y, Dong SS, Blackwell JL, Kashentseva EA, et al. Coxsackievirus-adenovirus receptor genetically fused to anti-human CD40 scFv enhances ade-noviral transduction of dendritic cells. Gene Ther 2002; 9(17): 1189-1193.

Heideman DA, Snijders PJ, Craanen ME, Bloemena E, Meijer CJ, Meuwissen SG, et al. Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-tar-geted adenoviral vectors. Cancer Gene Ther 2001; 8(5): 342-351.

52. Hakkarainen T, Hemminki A, Pereboev A, Barker SD, Asiedu C, Strong T, et al. CD40 is expressed on ovarian cancer cells and can be utilized for targeting adenovirus vectors. Clin Cancer Res 2003; 9(2):619-624.

53. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT. Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adeno-virus targeting to epidermal growth factor receptor-positive cells. J Virol 2000; 74(15):6875-6884.

54. Hemminki A, Dmitriev I, Liu B, Desmond RA, Alemany R, Curiel DT. Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusion molecule. Cancer Res 2001; 61(17):6377-6381.

55. Kashentseva EA, Seki T, Curiel DT, Dmitriev IP. Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain. Cancer Res 2002; 62(2):609-616.

56. Reynolds PN, Nicklin SA, Kaliberova L, Boatman BG, Grizzle WE, Balyasnikova IV, et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat Biotechnol 2001; 19(9):838-842.

57. Wickham TJ, Tzeng E, Shears LL, 2nd, Roelvink PW, Li Y, Lee GM, et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 1997; 71(11):8221-8229.

58. Hemminki A, Zinn KR, Liu B, Chaudhuri TR, Desmond RA, Rogers BE, et al. In vivo molecular chemotherapy and nonin-vasive imaging with an infectivity-enhanced adenovirus. J Natl Cancer Inst 2002; 94(10):741-749.

59. Hemminki A, Belousova N, Zinn KR, Liu B, Wang M, Chaudhuri TR, et al. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression. Mol Ther 2001; 4(3): 223-231.

60. Wesseling JG, Bosma PJ, Krasnykh V, Kashentseva EA, Blackwell JL, Reynolds PN, et al. Improved gene transfer efficiency to primary and established human pancreatic carcinoma target cells via epidermal growth factor receptor and integrin-targeted adenoviral vectors. Gene Ther 2001; 8(13):969-976.

61. Wu H, Seki T, Dmitriev I, Uil T, Kashentseva E, Han T, et al. Double modification of adenovirus fiber with RGD and polylysine motifs improves coxsackievirus-adenovirus receptor-independent gene transfer efficiency. Hum Gene Ther 2002; 13(13):1647-1653.

62. Krasnykh VN, Mikheeva GV, Douglas JT, Curiel DT. Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol 1996; 70(10):6839-6846.

63. Seggern DJ, Huang S, Fleck SK, Stevenson SC, Nemerow GR. Adenovirus vector pseudotyping in fiber-expressing cell lines: Improved transduction of Epstein-Barr virus-transformed B cells. J Virol 2000; 74(1):354-362.

64. Kanerva A, Mikheeva GV, Krasnykh V, Coolidge CJ, Lam JT, Mahasreshti PJ, et al. Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clin Cancer Res 2002; 8(1):275-280.

65. Havenga MJ, Lemckert AA, Ophorst OJ, van Meijer M, Germ-eraad WT, Grimbergen J, et al. Exploiting the natural diversity in adenovirus tropism for therapy and prevention of disease. J Virol 2002; 76(9):4612-4620.

66. Falgout B, Ketner G. Characterization of adenovirus particles made by deletion mutants lacking the fiber gene. J Virol 1988; 62(2):622-625.

67. Seggern DJ, Chiu CY, Fleck SK, Stewart PL, Nemerow GR. A helper-independent adenovirus vector with E1, E3, and fiber deleted: Structure and infectivity of fiberless particles. J Virol 1999; 73(2):1601-1608.

68. Krasnykh V, Belousova N, Korokhov N, Mikheeva G, Curiel DT. Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J Virol 2001; 75(9):4176-4183.

69. Magnusson MK, Hong SS, Boulanger P, Lindholm L. Genetic retargeting of adenovirus: Novel strategy employing ''deknob-bing'' of the fiber. J Virol 2001; 75(16):7280-7289.

70. Henning P, Magnusson MK, Gunneriusson E, Hong SS, Boulanger P, Nygren PA, et al. Genetic modification of adenovirus 5 tropism by a novel class of ligands based on a three-helix bundle scaffold derived from staphylococcal protein a. Hum Gene Ther 2002; 13(12):1427-1439.

71. Dmitriev IP, Kashentseva EA, Curiel DT. Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 2002; 76(14): 6893-6899.

72. Seki T, Dmitriev I, Kashentseva E, Takayama K, Rots M, Suzuki K, et al. Artificial extension of the adenovirus fiber shaft inhibits infectivity in coxsackievirus and adenovirus receptor-positive cell lines. J Virol 2002; 76(3):1100-1108.

73. Seki T, Dmitriev I, Suzuki K, Kashentseva E, Takayama K, Rots M, et al. Fiber shaft extension in combination with HI loop ligands augments infectivity for CAR-negative tumor targets but does not enhance hepatotropism in vivo. Gene Ther 2002; 9(16):1101-1108.

74. Tanaka T, Kanai F, Lan KH, Ohashi M, Shiratori Y, Yoshida Y, et al. Adenovirus-mediated gene therapy of gastric carcinoma using cancer-specific gene expression in vivo. Biochem Biophys Res Commun 1997; 231(3):775-779.

75. Arbuthnot PB, Bralet MP, Le Jossic C, Dedieu JF, Perricaudet M, Brechot C, et al. In vitro and in vivo hepatoma cell-specific expression of a gene transferred with an adenoviral vector. Hum Gene Ther 1996; 7(13):1503-1514.

76. Kaneko S, Hallenbeck P, Kotani T, Nakabayashi H, McGarrity G, Tamaoki T, et al. Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression. Cancer Res 1995; 55(22):5283-5287.

77. Chung I, Schwartz PE, Crystal RG, Pizzorno G, Leavitt J, Deisseroth AB. Use of L-plastin promoter to develop an ade-noviral system that confers transgene expression in ovarian cancer cells but not in normal mesothelial cells. Cancer Gene Ther 1999; 6(2):99-106.

78. Peng XY, Won JH, Rutherford T, Fujii T, Zelterman D, Pizzorno G, et al. The use of the L-plastin promoter for adenovi-ral-mediated, tumor-specific gene expression in ovarian and bladder cancer cell lines. Cancer Res 2001; 61(11): 4405-4413.

79. Tai YT, Strobel T, Kufe D, Cannistra SA. In vivo cytotoxicity of ovarian cancer cells through tumor-selective expression of the BAX gene. Cancer Res 1999; 59(9):2121-2126.

80. Casado E, Gomez-Navarro J, Yamamoto M, Adachi Y, Cool-idge CJ, Arafat WO, et al. Strategies to accomplish targeted expression of transgenes in ovarian cancer for molecular therapeutic applications. Clin Cancer Res 2001; 7(8):2496-2504.

81. Yamamoto M, Alemany R, Adachi Y, Grizzle WE, Curiel DT. Characterization of the cyclooxygenase-2 promoter in an adenoviral vector and its application for the mitigation of tox-icity in suicide gene therapy of gastrointestinal cancers. Mol Ther 2001; 3:2496-2504.

82. Ko SC, Cheon J, Kao C, Gotoh A, Shirakawa T, Sikes RA, et al. Osteocalcin promoter-based toxic gene therapy for the treatment of osteosarcoma in experimental models. Cancer Res 1996; 56(20):4614-4619.

83. Koeneman KS, Kao C, Ko SC, Yang L, Wada Y, Kallmes DF, et al. Osteocalcin-directed gene therapy for prostate-cancer bone metastasis. World J Urol 2000; 18(2):102-110.

84. Barker SD, Coolidge CJ, Kanerva A, Rivera AA, Yamamoto M, Hakkarainen T, et al. The regulatory sequences of the secretory leukoprotease inhibitor gene (SLPI) as a tissue-specific promoter for ovarian cancer gene therapy. J Gene Med 2003; 5(4):300-310.

85. Walton T, Wang JL, Ribas A, Barsky SH, Economou J, Nguyen M. Endothelium-specific expression of an E-selectin promoter recombinant adenoviral vector. Anticancer Res 1998; 18(3A):1357-1360.

86. Varda-Bloom N, Shaish A, Gonen A, Levanon K, Greenbe-reger S, Ferber S, et al. Tissue-specific gene therapy directed to tumor angiogenesis. Gene Ther 2001; 8(11):819—827.

87. Manome Y, Kunieda T, Wen PY, Koga T, Kufe DW, Ohno T. Transgene expression in malignant glioma using a replication-defective adenoviral vector containing the Egr-1 promoter: Activation by ionizing radiation or uptake of radioactive iodo-deoxyuridine. Hum Gene Ther 1998; 9(10):1409-1417.

88. Pitzer C, Schindowski K, Pomer S, Wirth T, Zoller M. In vivo manipulation of interleukin-2 expression by a retroviral tetracycline (tet)-regulated system. Cancer Gene Ther 1999; 6(2):139-146.

89. Barker SD, Dmitriev IP, Nettelbeck DM, Liu B, Rivera AA, Alvarez RA, et al. Combined transcriptional and transduc-tional targeting improves the specificity and efficacy of adenoviral gene delivery to ovarian carcinoma. Gene Ther 2003; 10(14):1198—1204.

90. Gomez-Navarro J, Curiel DT. Conditionally replicative adeno-viral vectors for cancer gene therapy. Lancet Oncol 2000; 1(3): 148-158.

91. Curiel DT. The development of conditionally replicative aden-oviruses for cancer therapy. Clin Cancer Res 2000; 6(9): 3395-3399.

92. Alemany R, Balague C, Curiel DT. Replicative adenoviruses for cancer therapy. Nat Biotechnol 2000; 18(7):723-727.

93. Kirn D, MartuzaRL, Zwiebel J. Replication-selective virother-apy for cancer: Biological principles, risk management and future directions. Nat Med 2001; 7(7):781-787.

94. Hemminki A. From molecular changes to customised therapy. Eur J Cancer 2002; 38(3):333-338.

95. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR. Prostate attenuated replication competent adenovirus (ARCA) CN706: A selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57(13):2559-2563.

96. Yu DC, Chen Y, Seng M, Dilley J, Henderson DR. The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 1999; 59(17):4200-4203.

97. Yu DC, Sakamoto GT, Henderson DR. Identification of the transcriptional regulatory sequences of human kallikrein 2 and theiruse in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy. Cancer Res 1999; 59(7):1498-1504.

98. Hallenbeck PL, Chang YN, Hay C, Golightly D, Stewart D, Lin J, et al. A novel tumor-specific replication-restricted ade-noviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther 1999; 10(10):1721-1733.

99. Hernandez-Alcoceba R, Pihalja M, Wicha MS, Clarke MF. A novel, conditionally replicative adenovirus for the treatment of breast cancer that allows controlled replication of E1a-deleted adenoviral vectors. Hum Gene Ther 2000; 11(14):2009-2024.

100. Kurihara T, Brough DE, Kovesdi I, Kufe DW. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest 2000; 106(6): 763-771.

Adachi Y, Reynolds PN, Yamamoto M, Wang M, Takayama K, Matsubara S, et al. A midkine promoter-based conditionally replicative adenovirus for treatment of pediatric solid tumors and bone marrow tumor purging. Cancer Res 2001; 61(21): 7882-7888.

Savontaus MJ, Sauter BV, Huang TG, Woo SL. Transcrip-tional targeting of conditionally replicating adenovirus to dividing endothelial cells. Gene Ther 2002; 9(14):972-979. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH. A novel three-pronged approach to kill cancer cells selectively: Concomitant viral, double suicide gene, and radiotherapy. Human Gene Ther 1998; 9(9):1323-1333. Wildner O, Blaese RM, Morris JC. Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res 1999; 59(2):410-413.

Barker DD, Berk AJ. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection [published erratum appears in Virology 1987; 158(1):263. Virology 1987; 156(1): 107-121.

Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274(5286): 373-376.

Ries SJ, Brandts CH, Chung AS, Biederer CH, Hann BC, Lipner EM, et al. Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (0NYX-015). Nature Med 2000; 6(10):1128-1133.

Hay JG, Shapiro N, Sauthoff H, Heitner S, Phupakdi W, Rom WN. Targeting the replication of adenoviral gene therapy vectors to lung cancer cells: The importance of the adenoviral E1b-55kD gene. Human Gene Ther 1999; 10(4):579-590. Heise C, Ganly I, Kim YT, Sampson-Johannes A, Brown R, Kirn D. Efficacy of a replication-selective adenovirus against ovarian carcinomatosis is dependent on tumor burden, viral replication and p53 status. Gene Ther 2000; 7(22):1925-1929. Heise C, Sampson-Johannes A, Williams A, McCormick F, Hoff DD, Kirn DH. ONYX-015, an E1B gene-attenuated ade-novirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents [see comments]. Nat Med 1997; 3(6):639-645. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, Hausen H. Replication of 0NYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 1998; 72(12):9470-9478.

Dix BR, Edwards SJ, Braithwaite AW. Does the antitumor adenovirus 0NYX-015/dl1520 selectively target cells defective in the p53 pathway. J Virol 2001; 75(12):5443-5447. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19(1):2-12.

Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A, et al. An adenovirus E1A mutant that demonstrates potent and selective systemic antitumoral efficacy. Nature Med 2000; 6(10):1134-1139. Sherr CJ. Cancer cell cycles. Science 1996; 274(5293): 1672-1627.

116. Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WS. Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 2000; 74(13):6147-6155.

117. Doronin K, Kuppuswamy M, Toth K, Tollefson AE, Krajcsi P, Krougliak V, et al. Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy. J Virol 2001; 75(7):3314-3324.

118. Balague C, Noya F, Alemany R, Chow LT, Curiel DT. Human papillomavirus E6E7-mediated adenovirus cell killing: Selectivity of mutant adenovirus replication in organotypic cultures of human keratinocytes. J Virol 2001; 75(16):7602-7611.

119. Nettelbeck DM, Rivera AA, Balague C, Alemany R, Curiel DT. Novel oncolytic adenoviruses targeted to melanoma: Specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter. Cancer Res 2002; 62(16):4663-4670.

120. Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L, et al. a controlled trial of intratumoral 0NYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med 2000; 6(8):879-885.

121. Shinoura N, Yoshida Y, Tsunoda R, Ohashi M, Zhang W, Asai A, et al. Highly augmented cytopathic effect of a fibermutant E1B-defective adenovirus for gene therapy of gliomas. Cancer Res 1999; 59(14):3411-3416.

122. Douglas JT, Kim M, Sumerel LA, Carey DE, Curiel DT. Efficient oncolysis by a replicating adenovirus (ad) in vivo is critically dependent on tumor expression of primary ad receptors. Cancer Res 2001; 61(3):813-817.

123. Suzuki K, Fueyo J, Krasnykh V, Reynolds P, Curiel DT, Alem-any R. A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 2001; 7:120-126.

124. Bauerschmitz GJ, Lam JT, Kanerva A, Suzuki K, Nettelbeck DM, Dmitriev I, et al. Treatment of ovarian cancer with a tropism modified oncolytic adenovirus. Cancer Res 2002; 62(5):1266-1270.

125. Kanerva A, Zinn KR, Chaudhuri T, Uil T, Wang M, Bauerschmitz GJ, et al. A selectively oncolytic adenovirus targeted to a receptor highly expressed in ovarian cancer. Mol Ther 2003, in press.

126. Kanerva A, Lam JT, Yamamoto M, Bauerschmitz GJ, Siegal GP, Barnes MN, et al. A cyclooxygenase-2 promoter based conditionally replicating adenovirus with enhanced infectivity for treatment of ovarian adenocarcinoma. Mol Ther 2002; 5: S414.

127. Hemminki A, Wang M, Desmond RA, Strong TV, Alvarez RD, Curiel DT. Serum and ascites neutralizing antibodies in ovarian cancer patients treated with intraperitoneal adenoviral gene therapy. Hum Gene Ther 2002; 13:1505-1514.

128. Blackwell JL, Li H, Gomez-Navarro J, Dmitriev I, Krasnykh V, Richter CA, et al. Using a tropism-modified adenoviral vector to circumvent inhibitory factors in ascites fluid. Hum Gene Ther 2000; 11(12):1657-1669.

129. Hemminki A, Kanerva A, Kremer EJ, Bauerschmitz GJ, Smith BF, et al. A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model. Mol Ther 2003; 7:163-173.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment