Biophysics at University College

Although Bernard Katz's impact on the course of neuroscience was as at least as great as Kuffler's, the style of the two men was very different, and their influence was felt in different ways. Whereas Kuffler's modus operandi was quintessentially eclectic—he would work on a project with a collaborator or two for a few years and then move on to an entirely different problem—Katz was a scientific bulldog. He had seized on the fundamental problem of chemical synaptic transmission in the late 1940s and never let it go. And whereas Kuffler was, superficially at least, an extroverted democrat, Katz was reserved and, to some degree, an autocrat.

As a result of these personal contrasts, as well as the cultural distinctions between the way science was practiced then in the United States and the United Kingdom, Katz's Department of Biophysics at University College London was very different from the Department of Neurobiology at Harvard. Although World War II had ended 25 years before I arrived in 1971, the mentality of rationing and general tight-fistedness remained. The labs were on the upper floors of one of the old buildings on Gower Street that ran the length of a long London block and housed most of the basic science departments. The rooms of the five faculty members in the department were comfortable but modest, and the surfeit of furnishings, equipment, and supplies that I had been used to in Boston was nowhere in evidence. Even Katz's lab was outfitted with equipment that would have been consigned to storage at Harvard, and his small office contained the same simple furniture that must have been used by A. V. Hill when he was director in the 1930s. The only notable feature was the bronze bust of Hill that stared down from its place of honor on a bookshelf. Hill had been "A. V." to Katz, and Katz was now deferentially addressed as "B. K." by the faculty, and as "Prof" by the staff.

The departmental infrastructure was run with an iron hand by a tenured technician named Audrey Paintin. She was a fireplug of a woman who demanded an extraordinary degree of diplomacy on the part of her petitioners to obtain even the most basic supplies. The work of one of the fellows who arrived about the same time I did was blocked for weeks because his robust American style did not suit Paintin, and even Katz seemed to tread lightly when dealing with her. The cost of everything was carefully considered. In addition to Paintin's frugality, Katz's secretary told me in no uncertain terms a few days after my arrival that notes to her or anyone else would be better written on back of a piece of paper that had been used for another purpose than on a fresh sheet. Among other things, this proved that superb science had been and could be done in very modest circumstances.

The students and fellows in Katz's domain (about a half-dozen of us in total) were in labs along a short corridor on the floor that included Katz's lab at one end, as well as Paintin's supply room and a machine shop. For most of the 1960s, Katz had collaborated with Ricardo Miledi, an extraordinarily talented experimentalist who was Katz's executive lieutenant and the most prominent of the other faculty members. Miledi had a smaller lab adjacent to Katz's where he pursued his own projects with a couple of fellows, in addition to his ongoing work with Katz. The other faculty members were on the floor above and included Paul Fatt, a brilliant but eccentric physiologist who had collaborated with Katz in the early 1950s in discovering the quantal nature of chemical synaptic transmission (the fact that neurotransmitters are packaged in synaptic vesicles released from axon terminals by the arrival of an action potential; see Figure 1.4B); Sally Page, an electron microscopist; and Rolf Niedergerke, another very good biophysicist and a disciple of Andrew Huxley who was working on the properties of heart muscle. The faculty in British universities operated far more independently than their counterparts in the more casual and collegial atmosphere of U.S. departments, typically behind closed doors. This unfortunate tradition presumably stemmed from the tutorial system of Dons that had been practiced for centuries at Oxford and Cambridge. Given this academic style, the faculty members upstairs were rarely in evidence on the floor below, even at teatime.

Although I expected to work on a project that would explicitly tap into the expertise and interests of Katz, Miledi and the others in this new environment, I had no idea what my options would be when I arrived in London. The year I had just spent working with Jack McMahan in Kuffler's lab had been extraordinarily valuable. Among other things, it had introduced me to vertebrate autonomic ganglia, the small collections of accessible and quite beautiful nerve cells that Kuffler and his postdocs Mike Dennis and John Harris were working on in the frog heart, and that Jack and I had studied in the ganglia of the mudpuppy heart. But my work with McMahan had not presented a problem that seemed especially worth pursuing. Having already soured on the nervous systems of simple invertebrates such as the leech, I needed to determine what general direction in Katz's department would make sense and give me a starting point for my own research in the academic job I would have to secure when my fellowship ended.

The first day I came in to work in the department after getting settled in our flat in Hampstead, Katz invited me into his office to discuss what I might do. Katz, then 60, was austere but certainly not the terrifying figure John Nicholls had described (Figure 3.1); I never knew whether this difference reflected a softening of Katz's style with age and success, or Nicholls's neuroses. Katz listened to my ill-formed ideas about issues that I might want to consider, and said that I should take my time in deciding on a particular course. He suggested that I also discuss the prospects with Miledi, who rode herd on what all the fellows were doing, and mentioned that another postdoc, Bert Sakmann, happened to be at loose ends and was also thinking about what to do next. Sakmann had just finished up a year-long project with Bill Betz, another fellow who was about to return to a job in the States, and Katz thought that it might make sense for us to work together on something of mutual interest. I met Bert later that day and we chatted about the possibilities.

Bert (Figure 3.2) had been medically trained in Tübingen and later in Munich, where he said he had gone in pursuit of the fellow medical student he eventually married. In the course of his medical education in Munich, Bert had spent three years carrying out research on the visual system with Otto Kreutzfeldt. Similar to many of us brought up scientifically in that era, Bert thought that working directly on the visual system or some other part of the brain was a rather daunting prospect. With Kreutzfeldt's help, he had sought out further training with Katz to pursue a future working at the seemingly more tractable level of neurons and their synaptic interactions. We hit it off well because of our similar backgrounds, shared fascination with all aspects of neuroscience, and corresponding opinions about the odd cast of characters and their relationships in the Department of Biophysics. Although Bert was four years younger, we were both recently married, ambitious, and faced the need to land academic jobs when we finished our fellowships in two years. We wanted to do something significant that would get our careers off and running, but our initial conversation made clear that neither one of us had a very good idea about what this might be.

Was this article helpful?

0 0

Post a comment